Abstract

Measurements of MPD thruster cathode erosion for six different current levels at one mass flow rate using a new mass loss measurement system called Surface Layer Activation indicate that the cathode erosion rate follows an exponential dependence on the total arc current for currents below a critical point identified as the transition to full ionization. At this point the erosion rate increases by an order of magnitude from that at lower currents, then deviates from the exponential behavior in a drop to an intermediate level. The increase in erosion at the full ionization current is interpreted as a manifestation of an additional mass loss mechanism excited at that point. A related experiment design was utilized to provide photomicroscopy of an arced cathode surface yielded a mean crater diameter of about 1 μm. The diameter of the observed craters was quite uniform over the cathode surface, indicating that the erosion processes are relatively insensitive to changes in the discharge occurring along the cathode axis. A simple thermal model of crater formation yields a linear relationship between the diameter and the site current. This relationship coupled with measurements of crater densities suggests that individual emissivities of the cathode surface carry only a few amps and survive for about 100 nsec.

Introduction

The use of magnetoplasmadynamic (MPD) thrusters inherently involves long burn times on the order of 10^6 seconds to impart useful impulses to spacecraft, thus placing large demands on thruster component integrity. The cathode has been identified as the life-limiting component for operation below a critical arc current and insulator erosion prevent practical operation 1-3. Nevertheless, cathode erosion research has been crippled by a lack of fundamental data and inability to identify the important parameters and processes. A research effort at the Princeton Electric Propulsion Laboratory provides a unique opportunity to obtain a database of fundamental cathode mass loss data and understanding the physical processes involved in cathode degradation.

Cathodes in MPD thrusters operate in two distinct modes which involve very different erosion processes. When the bulk cathode temperature is low, during quasi-steady operation and during the first few seconds of continuous operation, electrons are liberated mainly from a large number of very small, highly mobile emission sites. In these sites extremely high local temperatures, electric fields, and pressures cause local melting and ejection of cathode material. These local hot spots tend to damage the surface in the form of tiny hemispherical craters and molten tracks. This "spot" or "cold cathode" mode is found to be extremely destructive and limits cathode lifetime to around 10^2 seconds 1-9. Despite this, efforts continue to develop quasi-steady operation with cathodes that can satisfy projected mission requirements.

During steady-state operation however, when the discharge heats the cathode to sufficiently high temperatures, a diffuse attachment with much lower current densities attributable to field-enhanced thermionic emission is observed. This "diffuse" or "hot cathode" mode has a much lower associated erosion rate that can be attributed primarily to evaporation 3. A detailed grasp of the fundamental physical processes underlying both of these longevity limiting phenomena is an essential prerequisite for the development of engineering design criteria. The final goal of the Princeton program is the development of the necessary tools to study cathode erosion processes. As a result of this effort the Surface Layer Activation (SLA) technique has been developed. Since this technique is described in detail elsewhere 1,2, it will be only briefly reviewed in this paper. The second goal involves simple modelling and collection of a broad database of erosion measurements correlated with other parameters for the spot and diffuse modes of cathode operation. A number of erosion measurements have been made on different thruster configurations and different operating conditions 1-9, but beforehand no attempt has been made to systematically study the effect of gross operating conditions such as total current, current density, mass flow rate, propellant species, cathode material and temperature on mass loss rates in MPD thrusters.

This paper contains a preliminary collection of erosion rates measured on the cold cathode of a quasi-steady MPD thruster for a range of total currents. Although the development of this experimental database is an essential first step, it is unlikely that erosion data alone will provide the insight necessary to understand the complex processes involved in the erosion of cathodes. To evaluate the relative importance of the various heat inputs responsible for the destructive spot operation and to calculate the particle fluxes in the spot, the characteristic length scale over which spot parameters such as current density, surface temperature, and electric fields can be considered constant must be determined. One approach to obtaining such data, photomicrography of arced cathodes, will be discussed. Comparison of crater length scales measured in an exploratory photomicrographic examination of a cathode surface arced by a short burst discharge with the predictions of a simple model of crater formation show this to be a promising technique. Preliminary conclusions about cold cathode operation based on these first steps will then be presented.

Experimental Apparatus and Procedures

For this series of experiments the coaxial thruster configuration shown in Figure 1 was chosen. This design is based on the half-scale benchmark thruster 10. A simplified mass injection system was used to supply low density diode plasma for the cold cathode and by two small holes arrayed on a circle near the quartz sidewall. The thruster was mounted in a fiberglass vacuum tank 1.8 m in diameter and 4.8 m long, which was typically maintained at a pressure of about 3 x 10^-5 torr. Two msec duration rectangular current pulses were supplied through SCR switches by a 1.5 μF, 175 kV pulse-forming network.

Mass Loss Measurements

The amount of mass lost from the cathode surface is monitored with a new diode technique called Surface Layer Activation (SLA) 1-12. This method relies on the production of a radioactive tracer in a thin surface layer of the cathode by nuclear activation. The activity level of the tracer can then be monitored by observing the highly penetrating gamma radiation with standard radiation diagnostics mounted outside the thruster, and the decrease in activity during operation related to the amount of cathode material lost from the thin layer by erosion. This technique can provide highly accurate, in-situ, temporally and spatially resolved mass loss rates in a few hundred shots or several minutes of continuous operation and can be applied to a wide range of materials.

The radioactive used as a tracer is generated by bombarding a small spot on the cathode surface with a high energy ion beam in the Princeton University Cyclotron. In this experiment a spot approximately 5 mm long, 2 mm wide halfway along the length of the pure tungsten cathode was bombarded with a 15 MeV deuterium beam at an incident angle of 75°, which produced approximately 3.4 μCi of 184Re in a layer about 33 μm deep with a dose of 3 x 10^16 cm^-2. Typically 2% thoriated cathodes are used; however, with thoriated cathodes the surface coverage by thorium metal, and consequently the work function, cannot be easily determined. Pure tungsten with its well defined work function was therefore used to avoid this ambiguity.
in the mass loss measurements. Figure 2 is an autoradiograph of the cathode showing the position and extent of the activated area. This curve was generated using two different methods. First two tungsten disks were activated with the same beam parameters used in the cathode activation. The square and circular symbols represent data obtained by repetitively polishing thin layers from the surfaces of the disks and determining the remaining activity relative to the initial activity. The triangles are data from the second method, which involved activating a stack of 25, four μm thick tungsten foils with a beam normal to the surface to produce an activated layer about 110 μm deep, and comparing the activity in each foil to the activity in a polished control foil. In this data is used to convert the raw data described above to mass loss per unit surface area per unit time or discharge. However, erosion rates are typically expressed as mass loss per coulomb of charge. Since the surface layer activation techniques used to determine erosion rates are mass sensitive, the charge transfer through the activated spot must be specified to determine erosion rates in charge transfer units. In this experiment, the surface layer activation technique was used to measure the cathode erosion rate during operation of the thruster at an argon mass flow rate of 3 g/s with 2 msec long current pulses ranging in amplitude from 8.27 to 14.02 kA, as noted in Table 1. The time-resolved erosion rate in each sequence was monitored using the multichannel analyzer in the multichannel scaling mode described above. The channel dwell time, the total number of shots, and the interval between shots for case are also listed.

Cathode Surface Photomicrography

A 2% thoriated tungsten cathode was polished to a mirror finish with a sequence of abrasives down to a 1 μm diamond paste and then carefully cleaned with Inhibisol and acetone before installation. After evacuating the chamber, the cathode was glow discharges at the conditions listed in Table 2 to remove surface contaminants and oxides, which have been found to strongly affect the characteristic length scales. After the tank pressure recovered to 2 \times 10^{-5} \text{torr} after 1.5 minutes a single 1 msec discharge was fired at an argon mass flow rate of 3 g/s and a current of 11.2 kA. The resulting erosion rate was very sharp transition to an erosion rate nearly an order of magnitude higher than that at lower currents occurring.
between 11.63 and 12.35 kA. The rate then drops to an intermediate value at 14 kA.

A somewhat different picture emerges when the data is plotted on a logarithmic scale, as in Figure 9. Here a very good linear fit is obtained for the data between 10 and 13 kA, with the lower end of the fit intersecting the large error bar bracketing the data point at 11.62 kA. This suggests the following exponential relationship between the erosion rate and discharge current below from a linear to a cubic dependence. The current-voltage characteristic measured during this experiment is shown in Figure 19, which shows this change occurring at 11.6-12 kA. At current levels between 10 and 13 kA many of the measured voltages varied considerably from the mean values plotted, and were characterized by non-steady features such as humps after breakdown and sudden drops to lower values during the quasi-steady portion of the current pulse. Recent theoretical and experimental work by Choueiri demonstrates that the growth of a current-driven plasma instability which is responsible for the propellant ionization and heating increases dramatically when the plasma becomes fully ionized, causing a sharp increase in turbulent heating and anomalous resistivity. The correlation of the erosion rate increase with this critical current suggests that mass loss mechanisms other than evaporation and ejection of molten material from the spot regions become active at this point.

However, the consistent observation of cratering and localized melting on cold cathode surfaces indicates that local processes in a number of small emission sites play a major role in cathode mass loss. For this reason, the analytical and experimental effort has centered on the processes involved in crater formation. The widely accepted physical appearance of crater formation is that heating by high current density field emission resulting from electric field intensification at a micropoint or dielectric inclusion causes explosive evaporation, which initiates crater formation that continues until some mechanism halts emission or crater growth, at which point a new site erupts to the current.22 The current in low-current vacuum arcs is carried by a single luminous spot, and the resulting craters have average diameters which vary linearly with the total arc current, 4.8 x 10^{-4} µm/A for tungsten.22 However, there is a critical current at which the arc moves into one or more emission sites, leaving craters with diameters corresponding to the value for the critical current, 250-300 A.22,24, or less, which suggests that some phenomenon limits the total current a single emission site can carry.22 The luminous emission sites move in the retrograde direction opposite the j x B force produced with the self- or external magnetic field in low ambient pressures and with the Lorentz force in ambient pressures above a certain critical pressure. This motion is thought to correspond to the extinction of one crater and the ignition of a subsequent emission site on that crater rim or on a micropoint or inclusion further away.21,22

The following model describes the steady-state crater diameter, assuming that growth ceases when no more energy is available to melt cathode material, which occurs when heat conduction balances joule volume heating and the surface heat inputs. All of the molten cathode material is assumed to be removed from the site by pressure and electro-hydrodynamic forces, leaving a hemispherical crater with an inner surface which advances at the same rate as the melting plane. A spherical geometry is used, with a thermally symmetric and purely radial current flow and heat conduction. Resistivity is assumed to be a constant, but electrical resistivity is allowed to vary linearly with temperature. These conditions are described by this one-dimensional, steady-state heat conduction equation and associated boundary conditions:

\[
\frac{1}{\gamma} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) + \frac{\rho_{\text{joule}}}{\kappa} = 0
\]

\[
\rho_{\text{joule}} = j^2 = \frac{J^2 (\rho e + \sigma T)}{4\pi r^4}
\]

\[
T(r) = T_e \quad T(a) = T_0
\]

where \(r \) is the radius, \(T \) is the temperature, \(\rho_{\text{joule}} \) is the joule heating, \(\kappa \) is the thermal conductivity, \(J \) is the current density, \(T_e \) is the total site current, \(\rho e \) is the electrical resistivity, \(\sigma \) is the constant in resistivity, \(T_0 \) is the temperature coefficient of resistivity, \(r_e \) is the equilibrium crater radius, \(T_m \) is the melting temperature, and \(T_0 \) is the undisturbed temperature far from the site. The solution to this equation after application of the

S

Surface Characterization

Figure 10 is a low magnification photograph of the arced cathode surface approximately half way along the axis which shows a number of damage tracks crossing undisturbed regions. The tracks were found to extend primarily in the axial direction with a slight azimuthal component which caused them to spiral around the cathode, although individual tracks clearly deviate from this general trend. Figure 11 shows the surface at high magnification near the edge of one of these tracks. The craters lie primarily in patches where gross melting has occurred. These craters were round, as found in vacuum arc formation is that heating by high current density field emission around the cathode, although individual

The distributions of major axis lengths vary little with inputs. All of the photomicrographs and is shown for each axial position in associated boundary conditions:

The current which produces full propellant ionization, for this thruster geometry, propellant, and mass flow rate is calculated to be 12.5 kA, which corresponds to the transition in erosion rate. The full ionization current has been found experimentally to coincide with a number of phenomena such as humps after breakdown and sudden drops to lower values during the quasi-steady portion of the current pulse. Recent theoretical and experimental work by Choueiri demonstrates that the growth of a current-driven plasma instability which is responsible for the propellant ionization and heating increases dramatically when the plasma becomes fully ionized, causing a sharp increase in turbulent heating and anomalous resistivity. The correlation of the erosion rate increase with this critical current suggests that mass loss mechanisms other than evaporation and ejection of molten material from the spot regions become active at this point.

However, the consistent observation of cratering and localized melting on cold cathode surfaces indicates that local processes in a number of small emission sites play a major role in cathode mass loss. For this reason, the analytical and experimental effort has centered on the processes involved in crater formation. The widely accepted physical appearance of crater formation is that heating by high current density field emission resulting from electric field intensification at a micropoint or dielectric inclusion causes explosive evaporation, which initiates crater formation that continues until some mechanism halts emission or crater growth, at which point a new site erupts to the current.22 The current in low-current vacuum arcs is carried by a single luminous spot, and the resulting craters have average diameters which vary linearly with the total arc current, 4.8 x 10^{-4} µm/A for tungsten.22 However, there is a critical current at which the arc moves into one or more emission sites, leaving craters with diameters corresponding to the value for the critical current, 250-300 A.22,24, or less, which suggests that some phenomenon limits the total current a single emission site can carry.22 The luminous emission sites move in the retrograde direction opposite the j x B force produced with the self- or external magnetic field in low ambient pressures and with the Lorentz force in ambient pressures above a certain critical pressure. This motion is thought to correspond to the extinction of one crater and the ignition of a subsequent emission site on that crater rim or on a micropoint or inclusion further away.21,22

The following model describes the steady-state crater diameter, assuming that growth ceases when no more energy is available to melt cathode material, which occurs when heat conduction balances joule volume heating and the surface heat inputs. All of the molten cathode material is assumed to be removed from the site by pressure and electro-hydrodynamic forces, leaving a hemispherical crater with an inner surface which advances at the same rate as the melting plane. A spherical geometry is used, with a thermally symmetric and purely radial current flow and heat conduction. Resistivity is assumed to be a constant, but electrical resistivity is allowed to vary linearly with temperature. These conditions are described by this one-dimensional, steady-state heat conduction equation and associated boundary conditions:
boundary conditions yields the radial temperature distribution in the cathode surrounding the hemispherical crater. To determine \(r_e \) from this relation, the additional condition of heat transfer at the surface must be supplied. To obtain a first estimate the simple case of an insulating surface was examined. For this condition the obtained boundary conditions yields the radial temperature distribution in density, temperature, and velocity vary along the axis.

The activity spots. However, one would also expect the crater density mass flow rates will be conducted to verify that the transition is appearance along the cathode simply reflect differing numbers of increase the discrete emission sites everywhere, and that variations current densities tend to peak at the base and tip. It is probable although it is unclear at this point whether it is proper to degree of coverage depends on the current density, since cathode undergoes a change when the full ionization current is reached, offset to a certain extent on the basis of one pm, tungsten this relationship is

\[
J = \frac{\alpha}{4 \pi r^2 k} \cos^{-1} \left(\frac{(r - Pe_o)/a}{(r + Pe_o)/a} \right)
\]

which shows the linear relationship between radius and site current that is observed experimentally in vacuum arcs. For tungsten this relationship is \(r_e = (0.183) J \), with \(J \) in A and \(r_e \) in \(\mu m \), which is about four times higher than that given by Daalder on the cathode. The measurement, this length scale may be underestimated because surface heating was neglected, but this is offset to a certain extent by the assumptions that all of the molten material is removed and that site operation actually lasts long enough for the crater to reach thermal equilibrium.

The heavy arcing and gross melting at the base and tip of the cathode and distinct arc tracks in the center suggest that the degree of coverage depends on the current density, since cathode current densities tend to peak at the base and tip. It is probable that the motion of the arc spots results in molten tracks containing the discrete emission sites even when and that variations in appearance along the cathode simply reflect differing numbers of active spots. However, one would also expect the crater density to follow the axial current density variations. The fact that the data in figure 18 do not support this conclusion may be attributable to an underestimate of the crater density in the heavily arced regions at the tip and base, where multiple track crossings may have covered previous cratering or surface tension in grossly melted areas may have resulted in the smoothing of fossil crater remains.

The observed lengths of round crater diameters and elliptical crater minor axis lengths agrees with previous experiments conducted on other metals in vacuum arcs. The skewed distributions are not unexpected, since the distribution is naturally truncated on the left by the physical requirement that the minor axis be zero and possibly become infinitely large were undetectable or were more susceptible to smearing by surface tension forces in molten areas.

Several possible explanations for the formation of elliptical craters exist. For instance, such emission sites might erupt around elongated dielectric inclusions. However, the alignment of the craters' major axes with the Lorentz force strongly suggests that the elliptical craters are a result of spot motion parallel or anti-parallel to the magnetic field. If the minor axis length is identified as the characteristic dimension of the emitting site, then it is a linear function of the site current, comparison of the means indicates that the elliptical craters carry more current on average than the round craters. The relationship given by equation (3) yields 4.7 A compared to 3.0 A. The sites with higher currents apparently have a higher probability of moving continuously rather than jumping to a new discrete emission site. The correlation between the minor axis length (or current carried by the site) and the major axis length (or extent of travel) suggests that craters carrying higher currents will travel a longer distance on average before extinction. Both observations lead to the conclusion that the current per site affects either the velocity of motion or the site lifetime. However, the minor axis length may not correspond to the emission site diameter, but instead may simply reflect the fact that a moving heat source will heat the center of the path more than the periphery. It is possible that the minor axis is unambiguously identifiable and the theoretical model show, the crater diameter can be associated with a current for that site, so the mean crater diameter corresponds to the most probably site current. The spread in the distribution may be identified with a statistical variation in the current carried per emission site. The most remarkable implication of the data presented here is how little the current per site deviates from the average over the cathode surface. The discharge apparently draws current from the surface in exactly the same fashion, regardless of how discharge parameters such as current density, and plasma density, temperature, and velocity vary along the axis.

An important observation is that the diffuse MDP discharge extracts current from sites carrying much less than the 250-300 A limiting current. An estimate of the site lifetime can be obtained by assuming a uniform macroscopic current density of 373 A/cm² for the 1 msec arc and a crater density on the order of that measured, 10⁶/cm². This yields a charge transfer per crater of 3.8 x 10⁻⁶ C. If each crater carried on average 3.0 A, the crater lifetime would then be about 130 nsec. This is in the range of site lifetimes measured by Puchkaryov on tungsten point cathodes.

Conclusions

Surface layer activation has now been demonstrated as a mature technology capable of rapidly producing high accuracy, spatially and temporally resolved mass loss data that can be used to characterize MDP thruster cathode erosion. The photomicrographic study, although not conducted under conditions of ideal thrust, illustrated that the technique can be used to obtain fundamental data on the length scales characteristic of cold cathode erosion damage. The data presented above permit several tentative conclusions concerning cold cathode operating.

The measured erosion rates offer the message that cathode erosion is one of many MDP thruster characteristics that undergoes a change when the full ionization current is reached, although it is unclear at this point whether it is proper to characterize this transition as a change from an exponential dependence of erosion rate on current to a sudden dramatic increase in cathode erosion. Subsequent erosion tests at different mass flow rates will be conducted to verify that the transition is correlated with \(J_m \) and to test the exponential relationship at currents below \(J_m \). The magnetic field probing will be used to determine if the increased mass loss is due to an unexpected increase in local current density or to the unloading of additional erosion mechanisms.

The large database of measurements obtained from the preliminary test of cathode surface photomicrography indicates that the characteristic dimension of a discrete emission site is on the order of 1 \(\mu m \), and is surprisingly uniform over the cathode surface. The simple thermal model of crater formation yields a linear relationship between site current and the crater diameter, and comparison with the measured current densities suggests that typical emission sites on the cold cathode of an MDP thruster carry only a few amps each for time periods on the order of 100 nsec. The existence of elliptical craters is interpreted as a manifestation of spot motion. Subsequent applications of this method will be aimed at confirming the results suggested by this test and studying differences above and below the full ionization current.

Acknowledgements

The authors would like to acknowledge the assistance and advice of Elaine Lind in the Biology Department's Scanning Electron Microscope Laboratory, the staff of the Princeton University Cyclotron Facility, and Ruth Caswell '88, who provided invaluable aid in obtaining the crater length scale data.

References

Table 1: Conditions and Results of Erosion Experiments

<table>
<thead>
<tr>
<th>J (kA)</th>
<th>Charge Transfer (g/C)</th>
<th>Number of Discharges</th>
<th>Interval t/h (s)</th>
<th>Dwell Time (s)</th>
<th>Erosion Rate Erosion Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(g/cm²-shot)</td>
</tr>
<tr>
<td>8.27 ± .002</td>
<td>18.59 ± .03</td>
<td>250</td>
<td>30</td>
<td>30</td>
<td>-.2 ± .5</td>
</tr>
<tr>
<td>10.30 ± .02</td>
<td>22.20 ± .02</td>
<td>250</td>
<td>30</td>
<td>30</td>
<td>.9 ± .4</td>
</tr>
<tr>
<td>10.36 ± .01</td>
<td>22.36 ± .01</td>
<td>1000</td>
<td>30</td>
<td>100</td>
<td>.98 ± .08</td>
</tr>
<tr>
<td>11.10 ± .03</td>
<td>22.81 ± .01</td>
<td>250</td>
<td>30</td>
<td>30</td>
<td>2.4 ± .6</td>
</tr>
<tr>
<td>11.63 ± .01</td>
<td>23.131 ± .006</td>
<td>250</td>
<td>30</td>
<td>30</td>
<td>6.4 ± .6</td>
</tr>
<tr>
<td>12.35 ± .009</td>
<td>23.578 ± .009</td>
<td>250</td>
<td>30</td>
<td>30</td>
<td>45 ± 1</td>
</tr>
<tr>
<td>14.01 ± .02</td>
<td>25.36 ± .03</td>
<td>93</td>
<td>30</td>
<td>75</td>
<td>26 ± 2</td>
</tr>
<tr>
<td>14.03 ± .07</td>
<td>25.37 ± .04</td>
<td>48</td>
<td>30</td>
<td>30</td>
<td>39 ± 7</td>
</tr>
</tbody>
</table>

Table 2: Glow Discharge Conditions

<table>
<thead>
<tr>
<th>Argon Flow Rate (g/s)</th>
<th>0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Pressure (mTorr)</td>
<td>40</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>1000</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>25-300</td>
</tr>
<tr>
<td>Duration (sec)</td>
<td>240</td>
</tr>
</tbody>
</table>

Fig. 1: Half-scale benchmark thruster.
Fig. 2: Autoradiograph of the activated cathode.

Fig. 5: Activity time history produced by multichannel scaling.

Fig. 3: Typical gamma ray spectra.

Fig. 6: Depth calibration curve for 184Re.

Fig. 4: Spectral region isolated with upper- and lower-level pulse-height discriminators.

Fig. 7: Photomicrograph of crater with diameter marked.
Fig. 8: Variation of cathode erosion rate with total thruster current.

Fig. 11: Photomicrograph of arc track edge.

Fig. 9: Logarithmic plot of cathode erosion rate as a function of total thruster current.

Fig. 12: Photomicrograph of heavily arced region.

Fig. 10: Photomicrograph of arc tracks.

Fig. 13: Distribution of round crater diameters.
Fig. 14: Variation of round crater diameter mean and standard deviation with axial position.

Fig. 15: Variation of elliptical crater minor axis length mean and standard deviation with axial position.

Fig. 16: Variation of elliptical crater major axis length mean and standard deviation with axial position.

Fig. 17: Elliptical crater major axis length as a function of minor axis length.

Fig. 18: Variation of crater density with axial position.

Fig. 19: Voltage-current characteristic for argon, 3 g/s.