The 23rd International Electric Propulsion Conference has benefited from the generous contributions of the staffs of:

ROCKET RESEARCH COMPANY

JPL

BPD

BPD DIFESA E SPAZIO

Major financial contributors to the 23rd IEPC are:

ROCKET RESEARCH COMPANY

PACIFIC ELECTRO DYNAMICS

SPACE SYSTEMS

LORAL

NASA

Lewis Research Center

TRW

HUGHES

The conference organizing committee wishes to thank all these sponsors and to acknowledge the efforts of Lordhill Associates and Seattle VIP Services for their outstanding support in planning and organizing the 23rd IEPC.
ACKNOWLEDGMENTS

Preparation of these proceedings involved the efforts of many individuals:

Conference Committee
William W. Smith
John R. Brophy
William Deininger
R. Joseph Cassady

Executive Advisor Emeritus
Peter J. Turchi

Special Thanks
W. Andrew Hoskins
(for service above and beyond the call of duty)

Valuable Assistance
Charles Vaughan
Nicole Meckel
Paul Lichon
Rick Smith
Kurt Armbruster

Secretarial Support
Marlene Huntsinger
Shelley Danner

The proceedings are published under the auspices of the Electric Rocket Propulsion Society, and were printed and distributed with the assistance of The Ohio State University, Columbus, Ohio, USA.

These proceedings represent papers given at the 23rd International Electric Propulsion Conference, Seattle, Washington, USA, September, 1993. Responsibility for the validity, accuracy and correctness of data, calculations and opinions resides only with the respective authors.
Foreword

The 23rd International Electric Propulsion Conference took place in Seattle, Washington, in September 1993. A record setting 208 papers were presented out of a total of 245 abstracts accepted by the conference, making this by far the largest electric propulsion conference ever. The theme of the conference was, The Era of Application, in recognition that electric propulsion is rapidly making the transition from laboratory development to wide spread flight application. The large number of papers at this conference is representative of the growing interest in electric propulsion and recognition of the benefits of its by the aerospace community at large.

In keeping with the strong international character of the Electric Propulsion Conference, approximately half of the papers presented were from outside the United States. Technical and overview papers were presented by a total of ten different countries describing their respective electric propulsion activities including: Austria (1), France (3), Germany (12), Italy (25), Japan (25), Russia (40), The Netherlands (2), UK (12), and USA (119). Of the 245 abstracts submitted 25% were from aerospace companies, 38% from universities and the remaining 37% from government laboratories. A total of 258 people (including 70 university students) attended the conference.

A wealth of technical information on the state-of-the-art in electric propulsion is contained within this volume including approximately 70 papers on arcjet technology, 50 papers dealing with ion propulsion, 35 on MPD/electromagnetic thrusters, and 34 on Hall thrusters of various types (SPT and TAL). It is clear from the state of various thruster technologies and the number of planned and potential flight applications described in these papers that electric propulsion is coming of age. Since the 23rd IEPC four spacecraft have been launched equipped with electric propulsion systems for north-south stationkeeping. The Telstar 401 spacecraft was launched in December, 1993 and has been successfully using hydrazine arcjets for north-south stationkeeping (NSSK). The Russian GALS spacecraft was launched in January, 1994 and has been using xenon-fueled stationary plasma thrusters also successfully for NSSK. The Japanese-built ETS-IV spacecraft equipped with xenon ion engines and the arcjet-equipped Telstar 402 spacecraft were launched in August and September of 1994, respectively, but neither achieved their desired final orbits (due to systems unrelated to the electric propulsion systems).

Electric propulsion is clearly poised to significantly expand its role in the aerospace industry. I eagerly look forward to the 24th International Electric Propulsion Conference in Moscow, Russia, in September 1995 when this expanded role should be described in detail.

John Brophy
Technical Chairman
IEPC-93-001
Development and Application of Electric Propulsion Thrusters in Russia.........................1
A. Bober and N. Maslennikov, Fakel Enterprises, Kaliningrad, Russia; M. Day,
Space Systems/Loral, Palo Alto, CA; G. Popov and Yu. Rylov, Moscow Aviation
Institute, Moscow, Russia

IEPC-93-002
An Overview of the Ballistic Missile Defense Organization's Electric Propulsion Program........12
L. Caveny, Ballistic Missile Defense Organization, Washington, DC; F. Curran,
NASA Lewis, Cleveland, OH; J. Brophy, JPL, Pasadena, CA

IEPC-93-003
European Electric Propulsion Activities in the Era of Application...................................25
C. Bartoli and G. Saccoccia, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-004
An Overview of the Air Force's Electric Propulsion Program...39
D. Perkins, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-005
Review of Electric Propulsion Activities in Japan..45
Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-006
An Overview of NASA's Electric Propulsion Program..63
G. Bennett, NASA HQ, Washington, DC; F. Curran and D. Byers, NASA Lewis,
Cleveland, OH; J. Brophy and J. Stocky, JPL, Pasadena, CA

IEPC-93-007
Flight Qualification of a 1.8 kW Hydrazine Arcjet System...93
R. Smith, S. Yano, K. Armbruster and C. Roberts, Rocket Research Company,
Redmond, WA; D. Lichtin and J. Beck, Martin Marietta Astro Space, Princeton, NJ

IEPC-93-008
Development and Qualification Test of a SPT Electric Propulsion System for "GALS"...........108
Spacecraft
A. Bober, K. Kozubsky, G. Komarov, N. Maslennikov, Fakel Enterprises,
Kaliningrad, Russia; A. Koslov, A. Romashko, NPO PM, Krasnoyarsk, Russia

IEPC-93-009
Development of Ion Engine System For ETS-VI..116
S. Shimada, K. Satoh, Y. Gotoh, E. Nishida, I Terukina and T. Nora, Mitsubishi
Electric Company, Japan; H. Takegahara, Tokyo Metropolitan Institute of Technology,
Tokyo, Japan; K. Nakamaru and H. Nagano, National Space Development Agency of
Japan, Japan

IEPC-93-010
Design, Qualification, and On-Orbit Performance of the ATLAS Plasma Contactor.............125
J. R. Beattie, Hughes Research Laboratory, Malibu, CA; J. Marshall, J. Burch and W.
Gibson, Southwest Research Institute, San Antonio, Texas
IEPC-93-011
Electric Propulsion Integration Activities on the MSTI Spacecraft .. 131
D. Barnhart, J. McCombe, and D. Tilley, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-012
Low Power Arcjet System Description for North-South Station keeping ... 147
W. Deininger, M. Vulpiani, E. Tosti, and R. Di Stefano, BPD Difesa e Spazio, Colleferro, Italy; E. Detoma, and S. Ferrari, FIAT CIEI (SEPA), Torino, Italy
M. Rossi, ASI, Rome, Italy

IEPC-93-013
Arcjet Propulsion System Study for NNSK ... 162
F. Scortecci, L. d’Agostino, F. d’Auria and M. Andrenucci Centrospsazio, Pisa, Italy

IEPC-93-015
Applications of Ion Propulsion System to Communications Spacecraft ... 174
F. Porte, P. Saint Aubert and D. Mawby, Matra Marconi Space, UK; J. Hsing, Intelsat, Washington, DC

IEPC-93-016
Space-Borne Astronomical Gravity-Wave Interferometer Mission (SAGITARIUS): The 185
Field Emission Electric Propulsion Option
C. Bartoli, J. Gonzalez, and G. Saccoccia, ESA/ESTEC, Noordwijk, The Netherlands
M. Andrenucci, University of Pisa, Pisa, Italy; S. Marcuccio and A. Genovese, Centrospsazio, Pisa, Italy;

IEPC-93-017
Plasma Thrusters for Low Flying Satellites: A Space Telephone System Application 192
G. Dahlen, General Research Corp., Santa Barbara, CA; P. Baum, Baum Technology, Santa Barbara, CA; D. Cheng, Cheng Technology & Services, Sunnyvale, CA

IEPC-93-018
The Selection for NNSK Control System of Geosynchronous Satellites ... 200
Han-Ji Wu and Xue-Zhang Feng, Center for Space Science & Applied Research, Beijing, PRC

IEPC-93-019
Engineering Methods of Hollow Cathode Calculation ... 205
E. Vaulin, M. Kirushkina, L. Latyshev, V. Tikhonov, and E. Filatova, Moscow Aviation Institute, Moscow, Russia

IEPC-93-020
Extended Test of a Xenon Hollow ... 212
Cathode for a Space Plasma Contactor
T. Sarver-Verhey, Sverdrup Technology, Inc., Brook Park, OH

IEPC-93-021
On the Mechanism and Some Peculiarities of the Erosion of the Active Surface in 231
Cathode-Compensator of Electric Propulsion
I. Yartsev and V. Polistchook, Institute for High Temperatures Academy of Science, Moscow, Russia; V. Petrosov, Scientific Research Institute of Thermal Processes, Moscow, Russia
IEPC-93-022
On Local Erosion of the Cathode-Compensator in Electric Propulsion......................235
V. Polistchouk and I. Yarsev, Institute for High Temperatures Academy of Science,
Moscow, Russia; V. Petrosov, Scientific Research Institute of Thermal Processes,
Moscow, Russia

IEPC-93-023
Characteristics of Ions Emitted from High-Current Hollow Cathodes241
I. Kameyama and P. Wilbur, Colorado State University, Fort Collins, CO

IEPC-93-024
Theoretical Modeling of Orificed Hollow Cathode Discharges253
A. Salhi and P. Turchi, Ohio State University, Columbus, OH

IEPC-93-025
Experimental Investigation of a Hollow Cathode Discharge261
A. Salhi and P. Turchi, Ohio State University, Columbus, OH
R. Myers, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-026
The Study of the Physics of Hollow Cathode Discharges ..269
K. Malik, Imperial College, London, UK; D. Fearn, DRA, Farnborough, UK

IEPC-93-028
Cathode Erosion Research on Medium to High Power Arcjet Thrusters280
W. Harris, E. O'Hair, L. Hatfield, M. Kristiansen, Texas Tech University, Lubbock,
TX

IEPC-93-029
High Current Cathode Thermal Behavior, Part II: Experiments293
J. Polk and K. Goodfellow, JPL, Pasadena, CA

IEPC-93-030
High Current Cathode Thermal Behavior, Part I: Theory ..305
K. Goodfellow and J. Polk, JPL, Pasadena, CA

IEPC-93-032
C60 Molecule as a Propellant for Electric Propulsion ..319
H. Takegahara and Y. Nakayama, Tokyo Metropolitan Institute of Technology, Tokyo,
Japan

IEPC-93-033
Experimental Investigation of Fullerene Propellant for Ion Propulsion328
J. Anderson and D. Fitzgerald, JPL, Pasadena, CA

IEPC-93-036
Development of a Microwave Resonant Cavity Electrothermal Thruster Prototype337
D. Sullivan and M. Micci, Pennsylvania State University, University Park, PA

IEPC-93-037
Plume Characteristics of an ECR Plasma Thruster ..355
D. Kaufman and D. Goodwin, California Institute of Technology, Pasadena, CA
IEPC-93-038
Analysis and Experiments of a Whistler-Wave Plasma Thruster ...361
E. Hooper, S. Ferguson, M. Makowski and B. Stallard, Lawrence Livermore National Laboratory, Livermore, CA; J. Power, NASA Lewis, Cleveland, OH

IEPC-93-040
Microwave Plasma Contactor ...369
H. Kuninaka, Institute of Space and Astronautical Science, Kanagawa, Japan
N. Hiroe, K. Kitaoka and Y. Ishikawa, Nihon University, Chiba, Japan
K. Nishiyama, University of Tokyo, Tokyo, Japan

IEPC-93-041
Plasma Contactor Device Based on Hollow Cathode Technology for Spacecraft Charging374
Neutralization and Tethered System Applications: Review of Italian National Program
G. Cirri, G. Matticari, M. Minucci, G. Noci, A. Severi, and P. Amatulli, Proel Tecnologie, Firenze, Italy; F. Svelto, Italian Space Agency, Rome, Italy

IEPC-93-042
Hollow Cathode Heater Development for the Space Station Plasma Contactor384
G. Soulas, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-043
Design of a High Efficiency Power Processor for the Russian Stationary Plasma Thruster396
G. Fischer, T. Colbert, and M. Day, Space Systems/Loral, Palo Alto, CA; J. Kahn and H. Kaufman, Front Range Research, Fort Collins, CO; K. Kozubsky and V. Sokolov, Fakel Enterprises, Kaliningrad, Russia

IEPC-93-044
Power Electronics Development for the SPT-100 Thruster ..405
J. Hamley, G. Hill, and J. Sankovic, NASA Lewis, Cleveland, OH

IEPC-93-045
Arcjet Power Conditioning Unit: Design Characteristics and Preliminary Tests416
G. Botto and M. Carpita, Ansaldo Ricerche, Genova, Italy; G. Parisi, E. Detoma, FIAT-CIEI, Torino, Italy; W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-046
A 1.8 kW Static Arcjet Simulator ..424
E. Detoma and G. Parisi, UTI SEPA, Torino, Italy; W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-047
Development of a Power Control Unit for a Low Power Arcjet ..434
H. Willenbockel, G. Matthaeus, M. Kinnersley, DASA ERNO, Bremen, Germany

IEPC-93-048
Design Fabrication and Test of a 26 kW Arcjet and Power Conditioning Unit448
C. Vaughan, R. Cassady and J. Fisher, Rocket Research Company, Redmond, WA

IEPC-93-049
Achieving Reliable, Repeatable Starts of a 26 kW Arcjet ..460
R. Aadland, C. Vaughan, and W. Hoskins, Rocket Research Company, Redmond, WA
R. Kay, Pacific Electro Dynamics, Redmond, WA
IEPC-93-050
Propellant Breakdown Mechanisms in an Arcjet ...473
D. Tilley, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-052
Development of a Power Electronics Unit for the Space Station Freedom Plasma Contactor488
J. Hamley, G. Hill and M. Patterson, NASA Lewis, Cleveland, OH; J. Saggio and F. Terdan, ANALEX Corp., Cleveland, OH; J. Mansell, Case Western Reserve University, Cleveland, OH

IEPC-93-053
Power Processing Units for High-Powered Nuclear Electric Propulsion with MPD Thrusters500
R. Frisbee, R. Das and S. Krauthamer, JPL, Pasadena, CA

IEPC-93-054
Space Surveillance, Track and Autonomous Reposition -- SSTAR Program507
S. Sneegas and R. Vondra, AF Phillips Laboratory, Albuquerque, NM; R. Rosenthal, TRW, Redondo Beach, CA

IEPC-93-055
NEPSTP - An International Testbed for Xenon Electric Propulsion525
G. Herbert and G. Cameron, John Hopkins APL, MD L. Caveny, Ballistic Missile Defense Organization, Washington, DC

IEPC-93-056
Development and Utilization Objectives of a Low-Power Arcjet for the P3D (OSCAR) Satellite538
E. Messerschmid, D. Zube and H. Kurtz, University of Stuttgart, Stuttgart, Germany
K. Meinzer AMSAT Deutschland e. V., Marburg, Germany

IEPC-93-057
Overview of the Air Force ESEX Flight Experiment ..549
A. Sutton, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-058
Development of an MPD Thruster System for the EPEX Space Test554
K. Toki, Y. Shimizu, and K. Kuriki, Institute of Space and Astronautical Science, Kanagawa, Japan; H. Suzuki, Ishikawajima-Harima Heavy Industries, Co., Tokyo, Japan; Y. Kunii, Mitsubishi Electric Corporation, Kanagawa, Japan

IEPC-93-059
Ion Propulsion: A Key Enabler on ESA's DRTM Programme ..562
H. Bassner, DASA, Munich, Germany; M. Silvi, Alenia Spazio S.p.A, Rome, Italy; L. van Holtz and C. Bartoli, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-061
Electric Propulsion: The Next Real Breakthrough in Space Transportation Transportation573
R. Sackheim and R. Rosenthal, TRW, Redondo Beach, CA

IEPC-93-063
TROPIX: A Solar Electric Propulsion Flight Experiment ...583
J. Hickman and B. Hillard, NASA Lewis, Cleveland, OH; S. Oleson, Sverdrup Technology, Inc., Brook Park, OH
IEPC-93-064
NEP Early Flight Program: System Performance and Development Considerations..................591
M. Doherty and J. George, NASA Lewis, Cleveland, OH

IEPC-93-065
Potential NASA Early Flight Nuclear Electric Propulsion Missions......................................598
H. Bloomfield, NASA Lewis, Cleveland, OH

IEPC-93-066
Numerical Calculation of a Cylindrical MPD Thruster..609
P. Sleziona, M. Auweter-Kurtz and H. Schrade, University of Stuttgart, Stuttgart, Germany

IEPC-93-067
Anomalous Ionization in the MPD Thruster..618
E. Choueiri and H. Okuka, Princeton University, Princeton, NJ

IEPC-93-068
Space Charge Instability, Current Chopping and Anomalous Transport in Stationary.............626
MPD Thruster Flows
H. Wagner, M. Auweter-Kurtz and E. Messerschmid, University of Stuttgart, Stuttgart, Germany

IEPC-93-069
Nonlinear Development of Space Charge Instabilities in MPD Thruster Flows......................636
M. Maurer, MAN Technologie AG, Munich, Germany; H. Kaeppeler, University of Stuttgart, Stuttgart, Germany

IEPC-93-071
Ionization Rate Models and Inlet Ignition in Self-Field MPD Thrusters.............................644
E. Sheppard and M. Martinez-Sanchez, MIT, Cambridge, MA

IEPC-93-072
Numerical Fluid Simulation of an MPD Thruster with Real Geometry.................................654
G. Caldo, E. Choueiri, A. Kelly and R. Jahn, Princeton University, Princeton, NJ

IEPC-93-073
Analytical Study on Nonequilibrium Flows in Self-Field MPD Thrusters.............................663
T. Shoji, K. Ogiwara and I. Kimura, Tokai University, Kanagawa, Japan

IEPC-93-074
Numerical Simulation of Cylindrical Self-Field MPD Thrusters With Multiple Propellants........673
M. LaPointe, NASA Lewis, Cleveland, OH

IEPC-93-076
Research of Plasma Acceleration Processes in Self-Field and Applied Magnetic Fields..........692
Thrusters
V. Tikhonov, S. Semenikhin, and, Moscow Aviation Institute, Moscow, Russia
V. Alexandrov, G. Dyakonov and G. Popov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-077
Plasma Flow Investigation in MPD-Thruster..704
N. Barabanov, Moscow Aviation Institute, Moscow, Russia
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEPC-93-078</td>
<td>Design and Development of a 3- to 10-kW Ammonia Arcjet</td>
<td>K. Goodfellow and J. Polk, JPL, Pasadena, CA</td>
</tr>
<tr>
<td>IEPC-93-079</td>
<td>High Specific Power Ammonia and Hydrogen Arcjet Development</td>
<td>G. Aston, J. Kolts and M. Aston, Electric Propulsion Laboratory, Monument, CO</td>
</tr>
<tr>
<td>IEPC-93-081</td>
<td>A Review of the ESA ASTP-3 MPD/Arcjet Development Program (1988-1993)</td>
<td>W. Deininger, BPD Difesa e Spazio, Colleferro, Italy; M. Andrenucci, Centrosapio, Pisa, Italy; G. Saccoccia, European Space Agency, Noorwijk, The Netherlands</td>
</tr>
<tr>
<td>IEPC-93-082</td>
<td>Performance Testing of a 1 kW Arcjet Using Hydrazine</td>
<td>R. Di Stefano, W. Deininger and E. Tosti, BPD Difesa e Spazio, Colleferro, Italy; K. Armbruster, Rocket Research, Redmond, WA</td>
</tr>
<tr>
<td>IEPC-93-083</td>
<td>Intermittent Operation of a Low Power Arcjet</td>
<td>T. Yamada, Y. Iwamotto, K. Ogiwara, K. Toki, and K. Kuriki, Institute of Space and Astronautical Science, Kanagawa, Japan</td>
</tr>
<tr>
<td>IEPC-93-084</td>
<td>Experimental Investigation on Arcjets Performance and Possible Applications to Current</td>
<td>F. Scortecci and F. Paganucci, Centrosapio, Pisa, Italy; G. Saccoccia and J. Gonzalez, ESA/ESTEC, Noordwijk, The Netherlands</td>
</tr>
<tr>
<td>IEPC-93-087</td>
<td>Development and Demonstration of a 600 Second Mission Average Arcjet</td>
<td>P. Lichon, Rocket Research Company, Redmond, WA; J. Sankovic, NASA Lewis, Cleveland, OH</td>
</tr>
<tr>
<td>IEPC-93-088</td>
<td>Development of 10 kWe/N Radiatively-Cooled Arcjet Technology</td>
<td>E. Tosti and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy</td>
</tr>
<tr>
<td>IEPC-93-091</td>
<td>Performance Evaluation and Life Testing of the SPT-100</td>
<td>C. Garner, J. Polk, L. Pless, K. Goodfellow and J. Brophy, JPL, Pasadena, CA</td>
</tr>
<tr>
<td>IEPC-93-092</td>
<td>Effect of Background Nitrogen and Oxygen on Insulator Erosion in the SPT-100</td>
<td>J. Kahn, V. Zhurin, K. Kozubsky and T. Randolph, Front Range Research, Fort Collins, CO</td>
</tr>
<tr>
<td>IEPC-93-093</td>
<td>Facility Effects on SPT Thruster Testing</td>
<td>T. Randolph and M. Day, Space Systems/Loral, Palo Alto, CA; H. Kaufman and V. Zhurin, Front Range Research, Fort Collins, CO; V. Kim, Moscow Aviation Institute, Moscow, Russia; K. Kozubsky, Fakel Enterprises, Kaliningrad, Russia</td>
</tr>
</tbody>
</table>
IEPC-93-094
Performance Evaluation of the Russian SPT-100 Thruster at NASA LeRC.................................855
J. Sankovic, J. Hamley, and T. Haag, NASA Lewis, Cleveland, OH

IEPC-93-095
Dynamic Characteristics of Closed Drift Thrusters...883
S. Zhurin, J. Kahn, H. Kaufman, K. Kozubsky and M. Day, Front Range Research, Fort Collins, CO

IEPC-93-096
Stationary Plasma Thruster Plume Characteristics..893
R. Myers and D. Manzella, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-097
Stationary Plasma Thruster Plume Emissions...913
D. Manzella, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-098
Preliminary Far-Field Plume Sputtering of the Stationary Plasma Thruster (SPT-100).........924
E. Pencil, NASA Lewis, Cleveland, OH

IEPC-93-099
Prediction of Electric Thruster Lifetime..934
V. Baranov, A. Vasin, A. Kalyayev, V. Petrosov, Scientific Research Institute of Thermal Processes, Moscow, Russia

IEPC-93-100
Electric Rocket Engine Accelerated Test Concept..940
V. Baranov, A. Vasin, A. Kalyayev, V. Petrosov, Scientific Research Institute of Thermal Processes, Moscow, Russia

IEPC-93-101
Stationary Plasma Thruster (SPT) Development Steps and Future Perspective.......................945
A. Morozov, Institute of Atomic Energy, Moscow, Russia

IEPC-93-102
Flight Test of the RITA Experiment on EURECA... 950
H. Bassner, H. Berg, R. Kukies, H. Muller, DASA, Munich, Germany

IEPC-93-104
A Comprehensive Test and Evaluation Program for the UK-10 (T5) Ion Engine.......................956
M. Crofton, Aerospace Corporation, El Segundo, CA

IEPC-93-105
Recent Ion Thruster Developments at Giessen University..964
K. Groh, P. Fahrenbach, and H. Loeb, University of Giessen, Giessen, Germany

IEPC-93-106
Flight Qualification of an 18-mN Xenon Ion Thruster...971
J. Beattie, J. Williams, and R. Robson, Hughes Research Laboratories, Malibu, CA
Low Thrust Ion Propulsion: Development Activities at Proel Technologie

G. Cirri, G. Matticari and G. Noci, Proel Technologie, Firenze, Italy; M. Rossi and J. Sabbagh, Italian Space Agency, Rome, Italy; G. Perrotta, Alenia Spazio, Rome, Italy

Performance of the NASA 30-cm Ion Thruster

M. Patterson and T. Haag, NASA Lewis, Cleveland, OH

Review of the Qualification Activities on the Neutralizer for the RIT 10 Ion Thruster

G. Cirri, A. Cipriani, G. Matticari, A. Severi, and, Proel Technologie, Firenze, Italy; C. Bartoli, G. Saccoccia and H. Von Rohoden, ESA/ESTEC, Noordwijk, The Netherlands;

Operating Characteristics of a 15-cm-dia. Ion Engine for Small Planetary Spacecraft

J. Brophy, L. Pless, J. Mueller and J. Anderson, JPL, Pasadena, CA

Comparison of Erosion Rates of Carbon-Carbon and Molybdenum Ion Optics

J. Meserole and D. Hedges, Boeing Defense and Space Group, Seattle, WA

Fabrication of Carbon-Carbon Grids for Ion Optics

J. Mueller, J. Brophy, C. Garner and J. Brophy, JPL, Pasadena, CA

Performance of Hot Cathode MPD Thrusters

F. Paganucci and M. Andrenucci, Centrospazio, Pisa, Italy

Evaluation of Externally Heated Pulsed MPD Thruster Cathodes

R. Myers, Sverdrup Technology, Inc., Brookpark, OH; M. Domonkos, University of New Mexico, Albuquerque, NM; A. Gallimore, University of Michigan, MI

High-Current Stationary Plasma Accelerator of High Power

V. Ageyev and Ostrovsky, Scientific-Production Association "Energiya", Kaliningrad, Russia; V. Petrosov, Scientific-Research Institute of Thermal Processes, Moscow, Russia

Control and Minimization of Anode Fall in a Quasisteadt Nozzle-based Coaxial Plasma Thruster

J. Scheuer, R. Hoyt, K. Schoenberg, R. Gerwin, R. Moses and I. Henins, Los Alamos National Laboratory, Los Alamos, NM; R. Mayo and D. Black, North Carolina State University, Raleigh, NC

Development of a Superconducting Electromagnet for Applied Field Arcjet Thrusters

F. Scortecci, G. Capecchi, Centrospazio, Pisa, Italy; M. Andrenucci, University of Pisa, Pisa, Italy; G. Mei and R. Garr'e, Europa Metalli-LMI, Lucca, Italy
IEPC-93-120
Role of Anode Throat in MPD Arcjet...1093
I. Funaki, K. Toki and K. Kuriki, Institute of Space and Astronautical Science,
Kanagawa, Japan

IEPC-93-121
Component Erosion in 100-kW Class Applied-Field, Water-Cooled MPD Thrusters.........1100
M. Mantenieks, NASA Lewis, Cleveland, OH; R. Myers, Sverdrup Technology, Inc.,
Brookpark, OH

IEPC-93-122
Experimental Comparison of Steady State Nozzle Type and Cylindrical MPD Thrusters at....1124
High Current Levels
T. Wegmann, M. Auweter-Kurtz, H. Habiger, H. Kurtz, and H. Schrade, University of
Stuttgart, Stuttgart, Germany

IEPC-93-123
Optical Diagnostics of High Current Pulsed Arc in High Density Gas.........................1134
A. Voronov and V. Zhuravlev, Institute of Problems of Electrophysics of Russian
Academy of Science, St. Petersburg, Russia

IEPC-93-124
Electrostatic Probes for the Investigation of Arc-Driven Electric Propulsion Devices..........1137
H. Habiger, M. Auweter-Kurtz and H. Kurtz, University of Stuttgart, Stuttgart,
Germany

IEPC-93-125
Microinstabilities in High-Power MPD Systems: Preliminary Diagnostics......................1148
E. Bowman, Purdue University, West Lafayette, IN; D. Tilley, AF Phillips
Laboratory, Edwards AFB, CA

IEPC-93-126
Camber Effects on Plume Expansion for a Low-Power Hydrogen Arcjet.......................1159
I. Boyd, Cornell University, Ithaca, NY; D. Beattie and M. Cappelli, Stanford
University, Stanford, CA

IEPC-93-127
Laser Induced Fluorescence Measurements on the Plume from a 1 kW Arcjet Operated on....1169
Simulated Ammonia
W. Ruyten, D. Burtner and D. Keefer, CSTAR/UTSI, Tullahoma, TN

IEPC-93-128
Time Resolved Measurement of 1 kW Arcjet Plumes using Current Modulation Velocimetry....1177
and Triple Langmuir Probes
J. Pobst, J. Schilling, D. Erwin, University of Southern California, Los Angeles, CA;
R. Spores, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-129
Vibrational Non-Equilibrium in Arcjet Flows..1185
V. Babu, S. Aithal and V. Subramaniam, Ohio State University, Columbus, OH

IEPC-93-130
The Use of Pulsed Electron Beam Fluorescence for Arcjet Plume Diagnostics...............1201
J. Schilling, J. Pobst, D. Erwin, University of Southern California, Los Angeles, CA
<table>
<thead>
<tr>
<th>Conference Paper</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEPC-93-131</td>
<td>LIF Measurements of Species Velocities in an Arcjet Plume</td>
<td>1208</td>
</tr>
<tr>
<td></td>
<td>J. Liebeskind, R. Hanson and M. Cappelli, Stanford University, Stanford, CA</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-132</td>
<td>Arcjet Plume Studies Using Molecular Beam Mass Spectrometry</td>
<td>1212</td>
</tr>
<tr>
<td></td>
<td>J. Pollard, Aerospace Corporation, Los Angeles, CA</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-133</td>
<td>Optical Measurement and Numerical Analysis of Medium-Power Arcjet Non-Equilibrium Flowfields</td>
<td>1228</td>
</tr>
<tr>
<td></td>
<td>H. Tahara, N. Uda, K. Onoe, Y. Tsubakishita, and T. Yoshikawa, Osaka University, Osaka, Japan</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-134</td>
<td>Emission Spectroscopy of 1 kWe Arcjet Operating with Simulated Hydrazine</td>
<td>1238</td>
</tr>
<tr>
<td></td>
<td>E. Tosti and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-135</td>
<td>Effects of Nozzle Geometry on Plume Expansion for Small Thrusters</td>
<td>1256</td>
</tr>
<tr>
<td></td>
<td>D. Zelesnik, Ohio Aerospace Institute, Cleveland, OH; P. Penko, NASA Lewis, Cleveland, OH; I. Boyd, Cornell University, Ithaca, NY</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-136</td>
<td>Investigation of a 200 W Pulsed Arcjet</td>
<td>1266</td>
</tr>
<tr>
<td></td>
<td>G. Willmes and R. Burton, University of Illinois, Urbana-Champaign, IL</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-137</td>
<td>Numerical Modelling of Rarefied Plasma Plumes Entering Neutral Environment Gas</td>
<td>1275</td>
</tr>
<tr>
<td></td>
<td>A. Bishaev, V. Kalashnikiv, V. Kim, Research Institute of Applied Mechanics and Electrodynamics, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-138</td>
<td>Plasma Expansion in a Low Power MPD Thruster with Variable Magnetic Nozzle</td>
<td>1282</td>
</tr>
<tr>
<td></td>
<td>T. York and H. Kamhawi, Ohio State University, Columbus, OH</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-140</td>
<td>An Investigation of Magnetic Field Effects on Plume Density and Temperature Profiles of an Applied-Field MPD Thruster</td>
<td>1292</td>
</tr>
<tr>
<td></td>
<td>S. Bullock, NASA Lewis, Cleveland, OH; R. Myers, Sverdrup Technology, Inc., Brookpark, OH</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-141</td>
<td>MPD Thruster Plume Diagnostics</td>
<td>1308</td>
</tr>
<tr>
<td></td>
<td>M. Andrenucci, University of Pisa, Pisa, Italy; F. Paganucci, and A. Turco, Centrospazio, Pisa, Italy</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-142</td>
<td>Modelling of Ion Thruster Plume Contamination</td>
<td>1318</td>
</tr>
<tr>
<td></td>
<td>R. Samanta Roy and D. Hastings, MIT, Cambridge, MA; N. Gatsonis, John Hopkins University, Laurel, MD</td>
<td></td>
</tr>
</tbody>
</table>
IEPC-93-143
Options and Tradeoff for a Spaceborne Arcjet Diagnostics Package................................. 1328
S. Ferrari and E. Detoma, FIAT-CIEI SEPA, Torino, Italy; W. Deininger and E. Tosti, BPD Difesa e Spazio, Colleferro, Italy; F. Scortecchi and G. Capecchi, Centropazio Ospedale, Pisa, Italy; J. Scialdone, NASA Goddard Space Flight Center, Greenbelt, MD

IEPC-93-144
Radio Wave Refraction in Exhaust Plasma Plumes..1338
F. Gabdullin, V. Garkusha, A. Korsun, and E. Tverdokhlebova, Central Research Institute of Machine-Building, Kaliningrad (Moscow Region), Russia

IEPC-93-145
Exhaust Plasma Plume Impacts on Onboard Antenna Field Distribution.............................1344
V. Garkusha, B. Borisov, A. Korsun, L. Sokolov, and V. Strashinski, Central Research Institute of Machine-Building, Kaliningrad (Moscow Region), Russia

IEPC-93-147
Electromagnetic Interference of Stationary Plasma Thruster..1355
V. Brukhty, Scientific Research Institute of Thermal Processes, Moscow, Russia; K. Kirdyashev, Institute of Radioengineering and Electronics, Moscow, Russia

IEPC-93-148
Experimental and Analytical Evaluation of Electromagnetic Radiated Emissions from Electric Propulsion Systems
K. Kirdyashev, Institute of Radioengineering and Electronics Russian Academy of Sciences, Fryazino, (Moscow Region), Russia

IEPC-93-149
The Effect of Alkali Metal Electric Rocket Engines on Spacecraft...................................1367
V. Brukhty, V. Shutov and A. Smirnov, Scientific Research Institute of Thermal Processes, Moscow, Russia; M. Burgasov and A. Chirov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-150
A Double Pendulum Precision Thrust Measurement Balance...1376
T. Yang, P. Liu, F. Chang-Diaz, H. Lander, R. Childs, H. Becker and S. Fairfax, MIT, Cambridge, MA

IEPC-93-151
A Large, High Vacuum, High Pumping Speed Space Simulation Chamber for Electric Propulsion
S. Grisnik, NASA, Cleveland, OH; J. Parkes, Sverdrup Technology, Brookpark, OH

IEPC-93-154
Ion Beam Modeling in FEEP Thrusters... 1391
M. Andrenucci, A. Ciucci, and S. Marcuccio, Centropazio, Pisa, Italy

IEPC-93-155
Experimental Performance of Continuous and Pulsed FEEP Thrusters....................................1401
S. Marcuccio, A. Genovese, and M. Andrenucci, Centropazio, Pisa, Italy
IEPC-93-156
Field Emission Electric Propulsion (FEEP) System Study...1412
S. Marcuccio and A. Genovese, Centrospazio, Pisa, Italy; M. Andrenucci, University
of Pisa, Pisa, Italy; C. Bartoli, J. Gonzalez, and G. Saccoccia, ESA/ESTEC,
Noordwijk, The Netherlands

IEPC-93-157
Field Emission Electric Propulsion: Experimental Investigations on Microthrust FEEP.........1423
Thrusters
J. Gonzalez, G. Saccoccia and H. von Rohden, ESA/ESTEC, Noordwijk, The
Netherlands

IEPC-93-158
Prospects of Microstructured Liquid Metal Ion Sources (MILMIS) for Field Emission...........1432
Electric Propulsion (FEEP)
J. Mitterauer, Technische Universitat Wien, Wien, Austria

IEPC-93-159
Experimental Analysis of Coaxial Solid Propellant MPD Thruster with Segmented Anodes......1438
G. Paccani, University of Rome, Rome, Italy

IEPC-93-160
Development and Laboratory Tests of Erosion Pulsed Plasma Thrusters, Designed for the......1447
Attitude Control of Geostationary Satellite
N. Antropov, G. Popov and A. Rudikov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-165
Semi-Empirical Interior Ballistics Simulation Model of Arc Heated Light Gas Gun...............1457
A. Glukhov, Institute of Problems of Electrophysics Russian Academy of Science, St.
Petersburg, Russia

IEPC-93-166
Use of Hydrogen Arcjet Thrusters for Diamond Synthesis...1461
M. Cappelli, M. Loh and J. Liebeskind, Stanford University, Stanford, CA

IEPC-93-167
Atomic Oxygen Simulation Using MPD Thruster Technology..1475
S. Gabriel, N. Wood, G. Roberts, and A. Tatnall, University of Southampton,
Southampton, England

IEPC-93-168
Applications of Quasi-Steady MPD Arcjets to Material Processings -- Ceramic Coatings by......1482
Means of MPD Spray
H. Tahara, T. Tsubaki, Y. Kagaya, Y. Tsubakishita, and T. Yoshikawa, Osaka
University, Osaka, Japan

IEPC-93-169
Ion Thruster Endurance Test Using Development Model Thruster for ETS-VI......................1488
S. Shimada, K. Satoh, Y. Gotoh, E. Nishida and T. Noro, Mitsubishi Electric
Corporation, Japan; H. Takegahara, Tokyo Metropolitan Institute of Technology,
Tokyo, Japan; H. Nagano and K. Nakamaru, National Space Development Agency of
Japan
IEPC-93-170
500 Hour Tests of the T5 Ion Thruster with Dual and Triple Grid Extraction Systems........... 1500
S. Watson, P. Hurford, A. Martin, C. Banks, R. Eaton, M. Harvey, W. Moulford, and A. Pearce, Culham Laboratory, Oxfordshire, UK

IEPC-93-171
Erosion Measurements for Two- and Three-Grid Ion Thruster Extraction Systems............... 1509
A. Martin, C. Banks, R. Eaton, P. Hurford and W. Moulford, Culham Laboratory, Oxon, UK

IEPC-93-172
Test-to-Failure of a Two-Grid, 30-cm-dia. Ion Accelerator System................................. 1519
J. Brophy, J. Polk and L. Pless, JPL, Pasadena, CA

IEPC-93-173
Charge-Exchange Grid Erosion Study for Ground-Based and Space-Based Operations of...... 1539
Ion Thrusters
X. Peng, W. Ruyten, and D. Keefer, CSTAR/UTSI, Tullahoma, TN

IEPC-93-174
Effects of Design and Operating Conditions on Accelerator-Grid Impingement Current........ 1545
J. Monheiser and P. Wilbur, Colorado State University, Fort Collins, CO

IEPC-93-175
Erosion Characteristics of Two-Grid Ion Accelerating Systems.................................. 1556
V. Rawlin, NASA Lewis, Cleveland, OH

IEPC-93-176
Probabilistic Analysis Ion Engine Accelerator Grid Life.. 1562
J. Polk, N. Moore, L. Newlin, J. Brophy and D. Ebbeler, JPL, Pasadena, CA

IEPC-93-177
Ion Thruster Lifetime Limitations Imposed by Sputtering Processes............................ 1573
D. Fearn, DRA, Farnborough, UK

IEPC-93-178
Particle Simulation of Grid Erosion for Three-Grid Ion Thrusters................................ 1589
Q. Zhang, ERC, Inc., Tullahoma, TN; X. Peng and D. Keefer, University of Tenn.
Space Institute, Tullahoma, TN

IEPC-93-179
Extraction System Design and Modeling Using Computer Codes.................................. 1596
R. Bond and P. Latham, Culham Laboratory, Oxon, UK

IEPC-93-181
Numerical Simulation of the Performance of a Radiation-cooled 1 kW DC Arcjet Thruster...... 1606
H. Okamoto and M. Nishida, Kyushu University, Fukuoka, Japan; K. Tanaka,
Mitsubishi Electric Company, Hyogo, Japan; A. Beylich, Stosswellenlabor, Germany

IEPC-93-182
Development of a Numerical Model of the Nozzle Flow in Low Power Arcjet Thrusters....... 1612
A. Ciucci, Centrospazio, Pisa, Italy; L. d’Agostino, University of Pisa, Pisa, Italy
IEPC-93-183
On the Effects of Swirl in Arcjet Thruster Flows
V. Babu, S. Aithal and V. Subramaniam, Ohio State University, Columbus, OH

IEPC-93-184
Behavior of Arc Column in Arcjet Constrictor
T. Yamada, K. Toki, and K. Kuriki, Institute of Space and Astronautical Science, Kanagawa, Japan

IEPC-93-185
Anode Heat Loss and Current Distributions in DC Arcjets
K. Fujita and Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-186
Effect of a Pulsed Magnetic Field on Arcjet Operation
N. Tiliakos and R. Burton, University of Illinois, Urbana, IL

IEPC-93-187
Performance Calculation of Arcjet Thrusters -- The Three Channel Model
B. Glocker, H. Schrade, and M. Auweter-Kurtz, University of Stuttgart, Stuttgart, Germany

IEPC-93-189
Theoretical Modeling of Magnetoplasmadynamic Arcjets
P. Mikellides and P. Turchi, Ohio State University, Columbus, OH; N. Roderick, University of New Mexico, Albuquerque, NM

IEPC-93-190
Thrust Production Theory of Electromagnet/Thermal Hybrid Arcjets
A. Sasoh, Tohoku University, Sendai, Japan

IEPC-93-191
Calculation of a Nozzle Type MPD Thruster and Comparison with Measurements
P. Sleziona, M. Auweter-Kurtz, C. Boie, H. Kurtz, H. Schrade, and T. Wegmann, University of Stuttgart, Stuttgart, Germany

IEPC-93-194
Mechanisms of Anode Power Deposition in a Low Pressure Free Burning Arc
G. Soulas, Ohio State University, Columbus, OH; R. Myers, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-196
An Experimental Study of Lithium Dispenser Cathodes in the MPD Thruster

IEPC-93-197
Diagnostic Experiment and Numerical Analysis of the One-Dimensional MPD Flowfields
H. Tahara, T. Tsubaki, Y. Kagaya, Y. Tsubakishita, and T. Yoshikawa, Osaka University, Osaka, Japan
IEPC-93-198
Development of Ion Thruster System for Interplanetary Missions................................. 1805
H. Kuninaka, Institute of Space and Astronautical Science, Kanagawa, Japan; N. Hiroe, K. Kitaoka and Y. Ishikawa, Nihon University, Chiba, Japan; K. Nishiyama, University of Tokyo, Japan; Y. Horiuchi, NEC, Kanagawa, Japan

IEPC-93-200
A Mission to Pluto Using Nuclear Electric Propulsion... 1810
D. Fearn, DRA, Farnborough, UK

IEPC-93-202
Mission Factors Affecting Cost Optimization of Solar Electric Orbital Transfer Vehicles..... 1825
T. Miller and G. Seaworth, McDonnell Douglas Aerospace, Huntington Beach, CA

IEPC-93-203
Operational Requirements for Cost Effective Payload Delivery with Solar Electric............. 1835
K. Zondervan and A. Chan, The Aerospace Corporation, Los Angeles, CA; C. Feuchter, Kirtland AFB, NM; W. Smith, Los Angeles AFB, Los Angeles, CA

IEPC-93-204
Centaur-Derived Propellant Supply System for a Solar Electric Orbit Transfer Vehicle......... 1846
J. Schuster, J. LeMay, E. Morss and G. Williams, General Dynamics, San Diego, CA

IEPC-93-205
High Altitude Orbit Raising with On-Board Electric Propulsion.. 1861
B. Free, Scionics, Inc., Derwood, MD

IEPC-93-206
Effect of Volume Considerations on the Design of an Electric Orbital Transfer Vehicle........ 1878
G. Seaworth and T. Miller, McDonnell Douglas Aerospace, Huntington Beach, CA

IEPC-93-207
The Effect of Solar Array Degradation in Orbit-Raising with Electric Propulsion................ 1889
A. Fitzgerald, Orbital Sciences Corporation, Chandler, AZ

IEPC-93-208
Low Power Ground Based Laser Illumination for Electric Propulsion Applications............... 1896
M. LaPointe and S. Oleson, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-209
Liquid Space Optical Theory of Manned Starflight with Earthly Applications...................... 1922
J. Bloomer, Discraft Corporation, Portland, OR

IEPC-93-210
High Specific Impulse Experiments with 1.5- and 5-kW Thermal Arcjets................................ 1934
M. Riehle, M. Auweter-Kurtz, and H. Kurtz, University of Stuttgart, Stuttgart, Germany

IEPC-93-211
Performance of Advanced Concept Hydrogen Arcjet Anodes.. 1949
G. Butler, R. Cassady, W. Hoskins, D. King, and A. Kull, Rocket Research Company, Redmond, WA
IEPC-93-213
Parametric Test Results of a Low Power Arcjet.. 1963
G. Capecchi, F. Scortecci, F. Repola and M. Andrenucci, Centrospazio, Pisa, Italy

IEPC-93-214
Comparison of Experimental and Numerical Results for Radiation Cooled and Water.... 1979
Cooled Hydrogen Arcjets
T. Moeller, D. Keefer, and R. Rhodes, UTSI, Tullahoma, TN

IEPC-93-215
Hydrogen Arcjet Technology Status... 1989
F. Curran, NASA Lewis, Cleveland, OH; L. Caveny, Ballistic Missile Defense Organization, Washington, DC

IEPC-93-216
Measurement of Energy Deposition Modes in an Intermediate Power Hydrogen Arcjet.... 2008
W. Hoskins, A. Kull, G. Butler and W. Nesser, Rocket Research Company, Redmond, WA

IEPC-93-217
Non-Equilibrium Modeling of Hydrogen Arcjet Thrusters.................................... 2020
R. Rhodes and D. Keefer, UTSI, Tullahoma, TN

IEPC-93-218
Nonequilibrium Numerical Simulation of Radiation-Cooled Arcjet Thrusters............. 2032
S. Miller and M. Martinez-Sanchez, MIT, Cambridge, MA

IEPC-93-219
Axial Emission Diagnostics of a Low Power Hydrogen Arcjet Thruster....................... 2051
P. Storm and M. Cappelli, Stanford University, Stanford, CA

IEPC-93-220
A Direct Comparison of Hydrogen Arcjet Truster Properties to Model Predictions........ 2065
M. Cappelli, J. Liebeskind, R. Hanson, Stanford University, Stanford, CA; G. Butler and D. King, Rocket Research Company, Redmond, WA

IEPC-93-221
Development and Testing of a 100 kW Radiation Cooled Thermal Hydrogen Arcjet Thruster... 2079
T. Golz, M. Auweter-Kurtz and H. Kurtz, University of Stuttgart, Stuttgart, Germany

IEPC-93-222
Development and Investigation of Characteristics of Increased Power SPT Models......... 2087
B. Arkhipov, N. Maslennikov and V. Murashko, Fakel Enterprises, Kaliningrad, Russia; A. Veselovzorov, A. Morozov and I. Pokrovski, Institute of Atomic Energy, Moscow, Russia; V. Gavryushin and S. Khartov, Moscow Aviation Institute, Moscow, Russia; V. Kim and V. Kozlov, Institute of Applied Mechanics and Electrodynamics, Moscow, Russia

IEPC-93-223
Development Status of the SPT Mk II Thruster.. 2097
D. Valentian, SEP, Moisy Cramayel, France; A. Bugrova, Mirea, Moscow, Russia; A. Morozov, Institute of Atomic Energy, Moscow, Russia
IEPC-93-225
Development of 4-kW Hall-Type Electric Thruster
A. Koroteev, V. Petrosov, V. Baranov and A. Vasin, Scientific-Research Institute of Thermal Processes, Moscow, Russia; J. Wetch and S. Wong, International Scientific Products, San Jose, CA

IEPC-93-226
Theoretical and Experimental Analysis of Stationary Plasma Thruster Operation
D. Valentian and J. Bugeat, SEP Aerodrome de Melun Villaroche, Moissy Cramayel, France; R. Tchuyan, S. Khartov, L. Latyshev, and V. Sierovaiskiy, Moscow Aviation Institute, Moscow, Russia; G. Cirri, Proel, Florence, Italy

IEPC-93-228
Anode Layer Thrusters: State-of-the-Art and Perspectives
E. Lyapin, V. Garkusha, and A. Semenkin and S. Tverdokhlebov, Central Research Institute of Machine Building, Kaliningrad (Moscow Region), Moscow

IEPC-93-230
Two-Dimensional Numerical Model of Plasma Flow in a Hall Thruster
K. Komurasaki, Nagoya University, Nagoya, Japan; Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-231
Investigation of Erosion in Anode Layer Thrusters and Elaboration High Life Design Scheme
A. Semenkin, Central Research Institute of Machine Building, Kaliningrad (Moscow Region), Moscow

IEPC-93-232
Study of Double-Stage Anode Layer Thruster Using Inert Gases
S. Tverdokhlebov, Central Research Institute of Machine Building, Kaliningrad (Moscow Region), Moscow

IEPC-93-233
On Use of Alkali Metals as SPT Propellants
V. Petrosov, V. Baranov, A. Vasin and Yu. Nazarenko, Scientific-Research Institute of Thermal Processes, Moscow, Russia

IEPC-93-234
Measurements of the Electromagnetic Emissions from the T5 Ion Thruster
S. Chanda and F. Mawdsley, ERA, Ltd., UK; R. Brown, Matra Marconi Space, Ltd., UK; S. Watson, Culham Laboratory, UK; A. Malik, Imperial College, London, UK; D. Fearn, DRA, Farnborough, UK

IEPC-93-235
Beam Characteristics Evaluation of ETS-VI Xenon Ion Thruster
H. Takegahara, Y. Kasai, Tokyo Metropolitan Institute of Technology, Tokyo, Japan; Y. Gotoh, Mitsubishi Electric Company, Japan; K. Miyazaki, Y. Hayakawa, and S. Kitamura, National Aerospace Laboratory, Japan; H. Hagano and K. Nakamaru, NASDA, Japan

IEPC-93-236
Electric Probe Measurements in the Plume of the UK-10 Ion Thruster
P. deBoer, The Aerospace Corporation, Los Angeles, CA
IEPC-93-237
Microwave Diagnostics for Ion Engine Plumes...2185
S. Janson, The Aerospace Corporation, Los Angeles, CA.

IEPC-93-239
The Effect of Propellant Selection on Mission Cost for the UK-25 Inert Gas Ion Thruster.......2190
C. Edwards and S. Gabriel, University of Southampton, Southampton, UK

IEPC-93-242
Plasma Particle Simulation in Cusped Ion Thrusters... 2198
M. Hirakawa and Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-243
Plasma Properties and Ignition Characteristics of RF Ion Source......................................2205
H. Takegahara, T. Ohyama, K. Iwakura and T. Iwata, Tokyo Metropolitan Institute of Technology, Tokyo, Japan

IEPC-93-244
High Velocity Ion Source for Space Experiments...2211
V. Grigoryan, S. Kalitin, V. Obukhov, and M. Shalamov, Moscow Aviation Institute,
Moscow, Russia

IEPC-93-246
Plasma Contactor Development for Space Station... 2216
M. J. Patterson, J. A. Hamley, and C. Sarmiento, NASA Lewis, Cleveland, OH; D. Manzella, T. Sarver-Verhey and G. Soulas, Sverdrup Technology, Brookpark, OH; A. Nelson, Purdue University, West Lafayette, IN

IEPC-93-247
Main Features of Physical Processes in Stationary Plasma Thrusters..................................2245
A. Bugrova, A. Desiatkov, V. Kharchevnikov and A. Morozov, Moscow Institute of Radiotechnic, Electronics, and Automatics, Moscow, Russia

IEPC-93-249
Numerical Simulation of Hydrogen Arcjet Performance..2252
G. Butler, A. Kull, and D. King, Rocket Research Company, Redmond, WA

IEPC-93-250
Power Console Development for NASA's Electric Propulsion Outreach Program..................2264
L. Pinero, M. Patterson, and V. Satterwhite, NASA Lewis, Cleveland, OH

IEPC-93-251
Operation of a Brassboard PCU With a low Power Arcjet...2284
R. Stefano and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy; G. Parisi and Detoma, FIAT CIEI - SEPA, Torino, Italy

AUTHOR INDEX ... 2302
SUBJECT INDEX .. 2314
APPENDIX A - TECHNICAL SESSION PROGRAM... 2320
APPENDIX B - MAILING ADDRESSES.. 2336
PROCEEDINGS OF THE 23RD
INTERNATIONAL ELECTRIC PROPULSION
CONFERENCE

VOLUME 2

PAPERS
IEPC-93-088
THROUGH
IEPC-93-176
TABLE OF CONTENTS

VOLUME 1
PAPERS IEPC-93-001 - IEPC-93-087
PAGES 1 - 803

VOLUME 2
PAPERS IEPC-93-088 - IEPC-93-176
PAGES 804 - 1616

VOLUME 3
PAPERS IEPC-93-177 - IEPC-93-251
AUTHOR INDEX, SUBJECT INDEX, APPENDICES
PAGES 1617 - 2341
IEPC-93-001
Development and Application of Electric Propulsion Thrusters in Russia..........................1
A. Bober and N. Maslennikov, Fakel Enterprises, Kaliningrad, Russia; M. Day, Space Systems/Loral, Palo Alto, CA; G. Popov and Yu. Rylov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-002
An Overview of the Ballistic Missile Defense Organization's Electric Propulsion Program......12
L. Caveny, Ballistic Missile Defense Organization, Washington, DC; F. Curran, NASA Lewis, Cleveland, OH; J. Brophy, JPL, Pasadena, CA

IEPC-93-003
European Electric Propulsion Activities in the Era of Application....................................25
C. Bartoli and G. Saccoccia, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-004
An Overview of the Air Force's Electric Propulsion Program..39
D. Perkins, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-005
Review of Electric Propulsion Activities in Japan..45
Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-006
An Overview of NASA's Electric Propulsion Program...63
G. Bennett, NASA HQ, Washington, DC; F. Curran and D. Byers, NASA Lewis, Cleveland, OH; J. Brophy and J. Stocky, JPL, Pasadena, CA

IEPC-93-007
Flight Qualification of a 1.8 kW Hydrazine Arcjet System...93

IEPC-93-008
Development and Qualification Test of a SPT Electric Propulsion System for "GALS"...........108
Spacecraft
A. Bober, K. Kozubsky, G. Komarow, N. Maslennikov, Fakel Enterprises, Kaliningrad, Russia; A. Koslov, A. Romashko, NPO PM, Krasnoyarsk, Russia

IEPC-93-009
Development of Ion Engine System For ETS-VI...116
S. Shimada, K. Satoh, Y. Gotoh, E. Nishida, I. Terukina and T. Nora, Mitsubishi Electric Company, Japan; H. Takegahara, Tokyo Metropolitan Institute of Technology, Tokyo, Japan; K. Nakamaru and H. Nagano, National Space Development Agency of Japan, Japan

IEPC-93-010
Design, Qualification, and On-Orbit Performance of the ATLAS Plasma Contactor.............125
J. R. Beattie, Hughes Research Laboratory, Malibu, CA; J. Marshall, J. Burch and W. Gibson, Southwest Research Institute, San Antonio, Texas
IEPC-93-011
Electric Propulsion Integration Activities on the MSTI Spacecraft
D. Barnhart, J. McCombe, and D. Tilley, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-012
Low Power Arcjet System Description for North-South Station keeping
W. Deininger, M. Vulpiani, E. Tosti, and R. Di Stefano, BPD Difesa e Spazio, Colleferro, Italy; E. Detoma, and S. Ferrari, FIAT CIEI (SEPA), Torino, Italy; M. Rossi, ASI, Rome, Italy

IEPC-93-013
Arcjet Propulsion System Study for NSSK
F. Scortecci, L. d'Agostino, F. d'Auria and M. Andrenucci Centrospazio, Pisa, Italy

IEPC-93-015
Applications of Ion Propulsion System to Communications Spacecraft
F. Porte, P. Saint Aubert and D. Mawby, Matra Marconi Space, UK; J. Hsing, Intelsat, Washington, DC

IEPC-93-016
Space-Borne Astronomical Gravity-Wave Interferometer Mission (SAGITARIUS): The Field Emission Electric Propulsion Option
C. Bartoli, J. Gonzalez, and G. Saccoccia, ESA/ESTEC, Noordwijk, The Netherlands; M. Andrenucci, University of Pisa, Pisa, Italy; S. Marcuccio and A. Genovese, Centrospazio, Pisa, Italy;

IEPC-93-017
Plasma Thrusters for Low Flying Satellites: A Space Telephone System Application
G. Dahlen, General Research Corp., Santa Barbara, CA; P. Baum, Baum Technology, Santa Barbara, CA; D. Cheng, Cheng Technology & Services, Sunnyvale, CA

IEPC-93-018
The Selection for NSSK Control System of Geosynchronous Satellites
Han-Ji Wu and Xue-Zhang Feng, Center for Space Science & Applied Research, Beijing, PRC

IEPC-93-019
Engineering Methods of Hollow Cathode Calculation
E. Vaulin, M. Kirushkina, L. Latyshev, V. Tikhonov, and E. Filatova, Moscow Aviation Institute, Moscow, Russia

IEPC-93-020
Extended Test of a Xenon Hollow Cathode for a Space Plasma Contactor
T. Sarver-Verhey, Sverdrup Technology, Inc., Brook Park, OH

IEPC-93-021
On the Mechanism and Some Peculiarities of the Erosion of the Active Surface in Cathode-Compensator of Electric Propulsion
I. Yartsev and V. Polistchouk, Institute for High Temperatures Academy of Science, Moscow, Russia; V. Petrosov, Scientific Research Institute of Thermal Processes, Moscow, Russia
IEPC-93-022
On Local Erosion of the Cathode-Compensator in Electric Propulsion..........................235
V. Polistchook and I. Yarsev, Institute for High Temperatures Academy of Science,
Moscow, Russia; V. Petrosov, Scientific Research Institute of Thermal Processes,
Moscow, Russia

IEPC-93-023
Characteristics of Ions Emitted from High-Current Hollow Cathodes.............................241
I. Kameyama and P. Wilbur, Colorado State University, Fort Collins, CO

IEPC-93-024
Theoretical Modeling of Orificed Hollow Cathode Discharges..................................253
A. Salhi and P. Turchi, Ohio State University, Columbus, OH

IEPC-93-025
Experimental Investigation of a Hollow Cathode Discharge....................................261
A. Salhi and P. Turchi, Ohio State University, Columbus, OH
R. Myers, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-026
The Study of the Physics of Hollow Cathode Discharges...269
K. Malik, Imperial College, London, UK; D. Fearn, DRA, Farnborough, UK

IEPC-93-028
Cathode Erosion Research on Medium to High Power Arcjet Thrusters.........................280
W. Harris, E. O'Hair, L. Hatfield, M. Kristiansen, Texas Tech University, Lubbock,
TX

IEPC-93-029
High Current Cathode Thermal Behavior, Part II: Experiments..................................293
J. Polk and K. Goodfellow, JPL, Pasadena, CA

IEPC-93-030
High Current Cathode Thermal Behavior, Part I: Theory...305
K. Goodfellow and J. Polk, JPL, Pasadena, CA

IEPC-93-032
C60 Molecule as a Propellant for Electric Propulsion..319
H. Takegahara and Y. Nakayama, Tokyo Metropolitan Institute of Technology, Tokyo,
Japan

IEPC-93-033
Experimental Investigation of Fullerene Propellant for Ion Propulsion....................328
J. Anderson and D. Fitzgerald, JPL, Pasadena, CA

IEPC-93-036
Development of a Microwave Resonant Cavity Electrothermal Thruster Prototype............337
D. Sullivan and M. Micci, Pennsylvania State University, University Park, PA

IEPC-93-037
Plume Characteristics of an ECR Plasma Thruster...355
D. Kaufman and D. Goodwin, California Institute of Technology, Pasadena, CA
IEPC-93-038
Analysis and Experiments of a Whistler-Wave Plasma Thruster..........................361
E. Hooper, S. Ferguson, M. Makowski and B. Stallard, Lawrence Livermore National
Laboratory, Livermore, CA; J. Power, NASA Lewis, Cleveland, OH

IEPC-93-040
Microwave Plasma Contactor...369
H. Kuninaka, Institute of Space and Astronautical Science, Kanagawa, Japan
N. Hiroe, K. Kitaoaka and Y. Ishikawa, Nihon University, Chiba, Japan
K. Nishiyama, University of Tokyo, Tokyo, Japan

IEPC-93-041
Plasma Contactor Device Based on Hollow Cathode Technology for Spacecraft Charging........374
Neutralization and Tethered System Applications: Review of Italian National Program
G. Cirri, G. Matticari, M. Minucci, G. Noci, A. Severi, and P. Amatulli, Proel
Technologie, Firenze, Italy; F. Svelto, Italian Space Agency, Rome, Italy

IEPC-93-042
Hollow Cathode Heater Development for the Space Station Plasma Contactor..................384
G. Souls, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-043
Design of a High Efficiency Power Processor for the Russian Stationary Plasma Thruster......396
G. Fischer, T. Colbert, and M. Day, Space Systems/Loral, Palo Alto, CA; J. Kahn
and H. Kaufman, Front Range Research, Fort Collins, CO; K. Kozubsky and V.
Sokolov, Fakel Enterprises, Kaliningrad, Russia

IEPC-93-044
Power Electronics Development for the SPT-100 Thruster.......................................405
J. Hamley, G. Hill, and J. Sankovic, NASA Lewis, Cleveland, OH

IEPC-93-045
Arcjet Power Conditioning Unit: Design Characteristics and Preliminary Tests................416
G. Botto and M. Carpita, Ansaldo Ricerche, Genova, Italy; G. Parisi, E. Detoma,
FIAT-CIEI, Torino, Italy; W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-046
A 1.8 kW Static Arcjet Simulator..424
E. Detoma and G. Parisi, UTI SEPA, Torino, Italy; W. Deininger, BPD Difesa e Spazio,
Colleferro, Italy

IEPC-93-047
Development of a Power Control Unit for a Low Power Arcjet..................................434
H. Willenbockel, G. Matthaeus, M. Kinnersley, DASA ERNO, Bremen, Germany

IEPC-93-048
Design Fabrication and Test of a 26 kW Arcjet and Power Conditioning Unit.................448
C. Vaughan, R. Cassady and J. Fisher, Rocket Research Company, Redmond, WA

IEPC-93-049
Achieving Reliable, Repeatable Starts of a 26 kW Arcjet......................................460
R. Aadland, C. Vaughan, and W. Hoskins, Rocket Research Company, Redmond, WA,
R. Kay, Pacific Electro Dynamics, Redmond, WA
<table>
<thead>
<tr>
<th>IEPC-93-050</th>
<th>Propellant Breakdown Mechanisms in an Arcjet ...</th>
<th>473</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Tilley, AF Phillips Laboratory, Edwards AFB, CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-052</td>
<td>Development of a Power Electronics Unit for the Space Station Freedom Plasma Contactor</td>
<td>488</td>
</tr>
<tr>
<td>J. Hamley, G. Hill and M. Patterson, NASA Lewis, Cleveland, OH; J. Saggio and F. Terdan, ANALEX Corp., Cleveland, OH; J. Mansell, Case Western Reserve University, Cleveland, OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-053</td>
<td>Power Processing Units for High-Powered Nuclear Electric Propulsion with MPD Thrusters</td>
<td>500</td>
</tr>
<tr>
<td>R. Frisbee, R. Das and S. Krauthamer, JPL, Pasadena, CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-054</td>
<td>Space Surveillance, Track and Autonomous Reposition -- SSTAR Program</td>
<td>507</td>
</tr>
<tr>
<td>S. Sneegas and R. Vondra, AF Phillips Laboratory, Albuquerque, NM; R. Rosenthal, TRW, Redondo Beach, CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-055</td>
<td>NEPSTP - An International Testbed for Xenon Electric Propulsion ..</td>
<td>525</td>
</tr>
<tr>
<td>G. Herbert and G. Cameron, John Hopkins APL, MD L. Caveny, Ballistic Missile Defense Organization, Washington, DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-056</td>
<td>Development and Utilization Objectives of a Low-Power Arcjet for the P3D (OSCAR) Satellite</td>
<td>538</td>
</tr>
<tr>
<td>E. Messerschmid, D. Zube and H. Kurtz, University of Stuttgart, Stuttgart, Germany; K. Meinzer AMSAT Deutschland e. V., Marburg, Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-057</td>
<td>Overview of the Air Force ESEX Flight Experiment ..</td>
<td>549</td>
</tr>
<tr>
<td>A. Sutton, AF Phillips Laboratory, Edwards AFB, CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-058</td>
<td>Development of an MPD Thruster System for the EPEX Space Test ..</td>
<td>554</td>
</tr>
<tr>
<td>K. Toki, Y. Shimizu, and K. Kuriki, Institute of Space and Astronautical Science, Kanagawa, Japan; H. Suzuki, Ishikawajima-Harima Heavy Industries, Co., Tokyo, Japan; Y. Kunii, Mitsubishi Electric Corporation, Kanagawa, Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-059</td>
<td>Ion Propulsion: A Key Enabler on ESA's DRTM Programme ...</td>
<td>562</td>
</tr>
<tr>
<td>H. Bassner, DASA, Munich, Germany; M. Silvi, Alenia Spazio S.p.A, Rome, Italy; L. van Holtz and C. Bartoli, ESA/ESTEC, Noordwijk, The Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-061</td>
<td>Electric Propulsion: The Next Real Breakthrough in Space Transportation</td>
<td>573</td>
</tr>
<tr>
<td>R. Sackheim and R. Rosenthal, TRW, Redondo Beach, CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEPC-93-063</td>
<td>TROPIX: A Solar Electric Propulsion Flight Experiment ...</td>
<td>583</td>
</tr>
<tr>
<td>J. Hickman and B. Hillard, NASA Lewis, Cleveland, OH; S. Oleson, Sverdrup Technology, Inc., Brook Park, OH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IEPC-93-064
NEP Early Flight Program: System Performance and Development Considerations..................591
M. Doherty and J. George, NASA Lewis, Cleveland, OH

IEPC-93-065
Potential NASA Early Flight Nuclear Electric Propulsion Missions................................598
H. Bloomfield, NASA Lewis, Cleveland, OH

IEPC-93-066
Numerical Calculation of a Cylindrical MPD Thruster...609
P. Slezoia, M. Auweter-Kurtz and H. Schrade, University of Stuttgart, Stuttgart, Germany

IEPC-93-067
Anomalous Ionization in the MPD Thruster..618
E. Choueiri and H. Okuka, Princeton University, Princeton, NJ

IEPC-93-068
Space Charge Instability, Current Chopping and Anomalous Transport in Stationary............626
MPD Thruster Flows
H. Wagner, M. Auweter-Kurtz and E. Messerschmid, University of Stuttgart, Stuttgart, Germany

IEPC-93-069
Nonlinear Development of Space Charge Instabilities in MPD Thruster Flows.......................636
M. Maurer, MAN Technologie AG, Muchen, Germany; H. Kaeppeler, University of Stuttgart, Stuttgart, Germany

IEPC-93-071
Ionization Rate Models and Inlet Ignition in Self-Field MPD Thrusters...............................644
E. Sheppard and M. Martinez-Sanchez, MIT, Cambridge, MA

IEPC-93-072
Numerical Fluid Simulation of an MPD Thruster with Real Geometry....................................654
G. Caldo, E. Choueiri, A. Kelly and R. Jahn, Princeton University, Princeton, NJ

IEPC-93-073
Analytical Study on Nonequilibrium Flows in Self-Field MPD Thrusters..............................663
T. Shoji, K. Ogiwara and I. Kimura, Tokai University, Kanagawa, Japan

IEPC-93-074
Numerical Simulation of Cylindrical Self-Field MPD Thrusters With Multiple Propellants........673
M. LaPointe, NASA Lewis, Cleveland, OH

IEPC-93-076
Research of Plasma Acceleration Processes in Self-Field and Applied Magnetic Fields........692
Thrusters
V. Tikhonov, S. Semenikhin, and, Moscow Aviation Institute, Moscow, Russia
V. Alexandrov, G. Dyakonov and G. Popov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-077
Plasma Flow Investigation in MPD-Thruster...704
N. Barabanov, Moscow Aviation Institute, Moscow, Russia
IEPC-93-078
Design and Development of a 3- to 10-kW Ammonia Arcjet...710
K. Goodfellow and J. Polk, JPL, Pasadena, CA

IEPC-93-079
High Specific Power Ammonia and Hydrogen Arcjet Development...724
G. Aston, J. Kolts and M. Aston, Electric Propulsion Laboratory, Monument, CO

IEPC-93-081
A Review of the ESA ASTP-3 MPD/Arcjet Development Program (1988-1993).................................734
W. Deininger, BPD Difesa e Spazio, Colleferro, Italy; M. Andrenucci, Centrospazio,
Pisa, Italy; G. Saccoccia, European Space Agency, Noorwijk, The Netherlands

IEPC-93-082
Performance Testing of a 1 kW Arcjet Using Hydrazine...754
R. Di Stefano, W. Deininger and E. Tosti, BPD Difesa e Spazio, Colleferro, Italy; K.
Armbruster, Rocket Research, Redmond, WA

IEPC-93-083
Intermittent Operation of a Low Power Arcjet..772
T. Yamada, Y. Iwamotto, K. Ogiwara, K. Toki, and K. Kuriki, Institute of Space and
Astronautical Science, Kanagawa, Japan

IEPC-93-084
Experimental Investigation on Arcjets Performance and Possible Applications to Current........779
Mission Concepts with Low-Power Availability
F. Scortecci and F. Paganucci, Centrospazio, Pisa, Italy; G. Saccoccia and J.
Gonzalez, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-087
Development and Demonstration of a 600 Second Mission Average Arcjet...............................789
P. Lichon, Rocket Research Company, Redmond, WA
J. Sankovic, NASA Lewis, Cleveland, OH;

IEPC-93-088
Development of 10 kWe/N Radiatively-Cooled Arcjet Technology...804
E. Tosti and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-091
Performance Evaluation and Life Testing of the SPT-100..823
C. Garner, J. Polk, L. Pless, K. Goodfellow and J. Brophy,
JPL, Pasadena, CA

IEPC-93-092
Effect of Background Nitrogen and Oxygen on Insulator Erosion in the SPT-100...............840
J. Kahn, V. Zhurin, K. Kozubsky and T. Randolph, Front Range Research, Fort
Collins, CO;

IEPC-93-093
Facility Effects on SPT Thruster Testing..844
T. Randolph and M. Day, Space Systems/Loral, Palo Alto, CA; H. Kaufman and V.
Zhurin, Front Range Research, Fort Collins, CO; V. Kim, Moscow Aviation Institute,
Moscow, Russia; K. Kozubsky, Fakel Enterprises, Kaliningrad, Russia
IEPC-93-094
Performance Evaluation of the Russian SPT-100 Thruster at NASA LeRC........................855
J. Sankovic, J. Hamley, and T. Haag, NASA Lewis, Cleveland, OH

IEPC-93-095
Dynamic Characteristics of Closed Drift Thrusters..883
S. Zhurin, J. Kahn, H. Kaufman, K. Kozubsky and M. Day, Front Range Research,
Fort Collins, CO

IEPC-93-096
Stationary Plasma Thruster Plume Characteristics..893
R. Myers and D. Manzella, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-097
Stationary Plasma Thruster Plume Emissions...913
D. Manzella, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-098
Preliminary Far-Field Plume Sputtering of the Stationary Plasma Thruster (SPT-100)........924
E. Pencil, NASA Lewis, Cleveland, OH

IEPC-93-099
Prediction of Electric Thruster Lifetime..934
V. Baranov, A. Vasin, A. Kalyayev, V. Petrosov, Scientific Research Institute of
Thermal Processes, Moscow, Russia

IEPC-93-100
Electric Rocket Engine Accelerated Test Concept...940
V. Baranov, A. Vasin, A. Kalyayev, V. Petrosov, Scientific Research Institute of
Thermal Processes, Moscow, Russia

IEPC-93-101
Stationary Plasma Thruster (SPT) Development Steps and Future Perspective.............945
A. Morozov, Institute of Atomic Energy, Moscow, Russia

IEPC-93-102
Flight Test of the RITA Experiment on EURECA..950
H. Bassner, H. Berg, R. Kukies, H. Muller, DASA, Munich, Germany

IEPC-93-104
A Comprehensive Test and Evaluation Program for the UK-10 (T5) Ion Engine.............956
M. Crofton, Aerospace Corporation, El Segundo, CA

IEPC-93-105
Recent Ion Thruster Developments at Giessen University....................................964
K. Groh, P. Fahrenbach, and H. Loeb, University of Giessen, Giessen, Germany

IEPC-93-106
Flight Qualification of an 18-mN Xenon Ion Thruster..971
J. Beattie, J. Williams, and R. Robson, Hughes Research Laboratories, Malibu, CA
IEPC-93-107
Low Thrust Ion Propulsion: Development Activities at Proel Technologie.........................979
G. Cirri, G. Matticari and G. Noci, Proel Technologie, Firenze, Italy; M. Rossi and J.
Sabbagh, Italian Space Agency, Rome, Italy; G. Perrotta, Alenia Spazio, Rome, Italy

IEPC-93-108
Performance of the NASA 30-cm Ion Thruster..990
M. Patterson and T. Haag, NASA Lewis, Cleveland, OH

IEPC-93-109
Review of the Qualification Activities on the Neutralizer for the RIT 10 Ion Thruster.............1015
G. Cirri, A. Cipriani, G. Matticari, A. Severi, and, Proel Technologie, Firenze, Italy;
C. Bartoli, G. Saccoccia and H. Von Rohoden, ESA/ESTEC, Noordwijk, The
Netherlands;

IEPC-93-110
Operating Characteristics of a 15-cm-dia. Ion Engine for Small Planetary Spacecraft............1023
J. Brophy, L. Pless, J. Mueller and J. Anderson, JPL, Pasadena, CA

IEPC-93-111
Comparison of Erosion Rates of Carbon-Carbon and Molybdenum Ion Optics.....................1032
J. Meserole and D. Hedges, Boeing Defense and Space Group, Seattle, WA

IEPC-93-112
Fabrication of Carbon-Carbon Grids for Ion Optics...1041
J. Mueller, J. Brophy, C. Garner and J. Brophy, JPL, Pasadena, CA

IEPC-93-115
Performance of Hot Cathode MPD Thrusters...1050
F. Paganucci and M. Andrenucci, Centrosazio, Pisa, Italy

IEPC-93-116
Evaluation of Externally Heated Pulsed MPD Thruster Cathodes..................................1059
R. Myers, Sverdrup Technology, Inc., Brookpark, OH; M. Domonkos, University of
New Mexico, Albuquerque, NM; A. Gallimore, University of Michigan, MI

IEPC-93-117
High-Current Stationary Plasma Accelerator of High Power......................................1071
V. Ageyev and Ostrovsky, Scientific-Production Association "Energiya", Kaliningrad,
Russia; V. Petrosov, Scientific-Research Institute of Thermal Processes, Moscow,
Russia

IEPC-93-118
Control and Minimization of Anode Fall in a Quasisteadt Nozzle-based Coaxial Plasma........1076
Thruster
J. Scheuer, R. Hoyt, K. Schoenberg, R. Gerwin, R. Moses and I. Henins, Los Alamos
National Laboratory, Los Alamos, NM; R. Mayo and D. Black, North Carolina State
University, Raleigh, NC

IEPC-93-119
Development of a Superconducting Electromagnet for Applied Field Arcjet Thrusters.........1082
F. Scortecci, G. Capecchi, Centrosazio, Pisa, Italy;
M. Andrenucci, University of Pisa, Pisa, Italy; G. Mei and R. Garr’e, Europa Metalli-
LMI, Lucca, Italy
IEPC-93-120
Role of Anode Throat in MPD Arcjet...1093
I. Funaki, K. Toki and K. Kuriki, Institute of Space and Astronautical Science,
Kanagawa, Japan

IEPC-93-121
Component Erosion in 100-kW Class Applied-Field, Water-Cooled MPD Thrusters..........1100
M. Mantenieks, NASA Lewis, Cleveland, OH; R. Myers, Sverdrup Technology, Inc.,
Brookpark, OH

IEPC-93-122
Experimental Comparison of Steady State Nozzle Type and Cylindrical MPD Thrusters at....1124
High Current Levels
T. Wegmann, M. Auweter-Kurtz, H. Habiger, H. Kurtz, and H. Schrade, University of
Stuttgart, Stuttgart, Germany

IEPC-93-123
Optical Diagnostics of High Current Pulsed Arc in High Density Gas........................1134
A. Voronov and V. Zhuravlev, Institute of Problems of Electrophysics of Russian
Academy of Science, St. Petersburg, Russia

IEPC-93-124
Electrostatic Probes for the Investigation of Arc-Driven Electric Propulsion Devices........1137
H. Habiger, M. Auweter-Kurtz and H. Kurtz, University of Stuttgart, Stuttgart,
Germany

IEPC-93-125
Microinstabilities in High-Power MPD Systems: Preliminary Diagnostics..................1148
E. Bowman, Purdue University, West Lafayette, IN; D. Tilley, AF Phillips
Laboratory, Edwards AFB, CA

IEPC-93-126
Camber Effects on Plume Expansion for a Low-Power Hydrogen Arcjet....................1159
I. Boyd, Cornell University, Ithaca, NY; D. Beattie and M. Cappelli, Stanford
University, Stanford, CA

IEPC-93-127
Laser Induced Fluorescence Measurements on the Plume from a 1 kW Arcjet Operated on....1169
Simulated Ammonia
W. Ruyten, D. Burtner and D. Keefer, CSTAR/UTSI, Tullahoma, TN

IEPC-93-128
Time Resolved Measurement of 1 kW Arcjet Plumes using Current Modulation Velocimetry...1177
and Triple Langmuir Probes
J. Pobst, J. Schilling, D. Erwin, University of Southern California, Los Angeles, CA;
R. Spores, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-129
Vibrational Non-Equilibrium in Arcjet Flows...1185
V. Babu, S. Aithal and V. Subramaniam, Ohio State University, Columbus, OH

IEPC-93-130
The Use of Pulsed Electron Beam Fluorescence for Arcjet Plume Diagnostics.............1201
J. Schilling, J. Pobst, D. Erwin, University of Southern California, Los Angeles, CA
IEPC-93-131
LIF Measurements of Species Velocities in an Arcjet Plume..1208
J. Liebeskind, R. Hanson and M. Cappelli, Stanford University, Stanford, CA

IEPC-93-132
Arcjet Plume Studies Using Molecular Beam Mass Spectrometry..1212
J. Pollard, Aerospace Corporation, Los Angeles, CA

IEPC-93-133
Optical Measurement and Numerical Analysis of Medium-Power Arcjet Non-Equilibrium Flowfields...1228
H. Tahara, N. Uda, K. Onoe, Y. Tsubakishita, and T. Yoshikawa, Osaka University, Osaka, Japan

IEPC-93-134
Emission Spectroscopy of 1 kWe Arcjet Operating with Simulated Hydrazine..........................1238
E. Tosti and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-135
Effects of Nozzle Geometry on Plume Expansion for Small Thrusters......................................1256
D. Zelesnik, Ohio Aerospace Institute, Cleveland, OH; P. Penko, NASA Lewis, Cleveland, OH; I. Boyd, Cornell University, Ithaca, NY

IEPC-93-136
Investigation of a 200 W Pulsed Arcjet..1266
G. Willmes and R. Burton, University of Illinois, Urbana-Champaign, IL

IEPC-93-137
Numerical Modelling of Rarefied Plasma Plumes Entering Neutral Environment Gas.............1275
A. Bishaev, V. Kalashnikiv, V. Kim, Research Institute of Applied Mechanics and
Electrodynamics, Moscow, Russia

IEPC-93-138
Plasma Expansion in a Low Power MPD Thruster with Variable Magnetic Nozzle..................1282
T. York and H. Kamhawi, Ohio State University, Columbus, OH

IEPC-93-140
An Investigation of Magnetic Field Effects on Plume Density and Temperature Profiles of an Applied-Field MPD Thruster
S. Bullock, NASA Lewis, Cleveland, OH; R. Myers, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-141
MPD Thruster Plume Diagnostics..1308
M. Andrenucci, University of Pisa, Pisa, Italy; F. Paganucci, and A. Turco, Centrospazio, Pisa, Italy

IEPC-93-142
Modelling of Ion Thruster Plume Contamination..1318
R. Samanta Roy and D. Hastings, MIT, Cambridge, MA; N. Gatsonis, John Hopkins University, Laurel, MD
IEPC-93-143
Options and Tradeoff for a Spaceborne Arcjet Diagnostics Package
S. Ferrari and E. Detoma, FIAT-CIEI SEPA, Torino, Italy; W. Deininger and E. Tosti, BPD Difesa e Spazio, Colleferro, Italy; F. Scortecci and G. Capecchi, Centrospazio Ospedaletto, Pisa, Italy; J. Scialdone, NASA Goddard Space Flight Center, Greenbelt, MD

IEPC-93-144
Radio Wave Refraction in Exhaust Plasma Plumes
F. Gabdullin, V. Garkusha, A. Korsun, and E. Tverdokhlebova, Central Research Institute of Machine-Building, Kaliningrad (Moscow Region), Russia

IEPC-93-145
Exhaust Plasma Plume Impacts on Onboard Antenna Field Distribution
V. Garkusha, B. Borisov, A. Korsun, L. Sokolov, and V. Strashinski, Central Research Institute of Machine-Building, Kaliningrad (Moscow Region), Russia

IEPC-93-147
Electromagnetic Interference of Stationary Plasma Thruster
V. Brukhty, Scientific Research Institute of Thermal Processes, Moscow, Russia; K. Kirdyashev, Institute of Radioengineering and Electronics, Moscow, Russia

IEPC-93-148
Experimental and Analytical Evaluation of Electromagnetic Radiated Emissions from Electric Propulsion Systems
K. Kirdyashev, Institute of Radioengineering and Electronics Russian Academy of Sciences, Fryazino, (Moscow Region), Russia

IEPC-93-149
The Effect of Alkali Metal Electric Rocket Engines on Spacecraft
V. Brukhty, V. Shutov and A. Smirnov, Scientific Research Institute of Thermal Processes, Moscow, Russia; M. Burgasov and A. Chirov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-150
A Double Pendulum Precision Thrust Measurement Balance
T. Yang, P. Liu, F. Chang-Diaz, H. Lander, R. Childs, H. Becker and S. Fairfax, MIT, Cambridge, MA

IEPC-93-151
A Large, High Vacuum, High Pumping Speed Space Simulation Chamber for Electric Propulsion
S. Grisnik, NASA, Cleveland, OH; J. Parkes, Sverdrup Technology, Brookpark, OH

IEPC-93-154
Ion Beam Modeling in FEEP Thrusters
M. Andrenucci, A. Ciucci, and S. Marcuccio, Centrospazio, Pisa, Italy

IEPC-93-155
Experimental Performance of Continuous and Pulsed FEEP Thrusters
S. Marcuccio, A. Genovese, and M. Andrenucci, Centrospazio, Pisa, Italy
Field Emission Electric Propulsion (FEEP) System Study ... 1412
S. Marcuccio and A. Genovese, Centrospazio, Pisa, Italy; M. Andrenucci, University of Pisa, Pisa, Italy; C. Bartoli, J. Gonzalez, and G. Saccoccia, ESA/ESTEC, Noordwijk, The Netherlands

Field Emission Electric Propulsion: Experimental Investigations on Microthrust FEEP 1423
J. Gonzalez, G. Saccoccia and H. von Rohden, ESA/ESTEC, Noordwijk, The Netherlands

Prospects of Microstructured Liquid Metal Ion Sources (MILMIS) for Field Emission 1432
J. Mitterauer, Technische Universitat Wien, Wien, Austria

Experimental Analysis of Coaxial Solid Propellant MPD Thruster with Segmented Anodes 1438
G. Paccani, University of Rome, Rome, Italy

Development and Laboratory Tests of Erosion Pulsed Plasma Thrusters, Designed for the 1447
N. Antropov, G. Popov and A. Rudikov, Moscow Aviation Institute, Moscow, Russia

Semi-Empirical Interior Ballistics Simulation Model of Arc Heated Light Gas Gun 1457
A. Glukhov, Institute of Problems of Electrophysics Russian Academy of Science, St. Petersburg, Russia

Use of Hydrogen Arcjet Thrusters for Diamond Synthesis .. 1461
M. Cappelli, M. Loh and J. Liebeskind, Stanford University, Stanford, CA

Atomic Oxygen Simulation Using MPD Thruster Technology ... 1475
S. Gabriel, N. Wood, G. Roberts, and A. Tatnall, University of Southampton, Southampton, England

Applications of Quasi-Steady MPD Arcjets to Material Processings – Ceramic Coatings by 1482
H. Tahara, T. Tsubaki, Y. Kagaya, Y. Tsubakishita, and T. Yoshikawa, Osaka University, Osaka, Japan

Ion Thruster Endurance Test Using Development Model Thruster for ETS-VI 1488
S. Shimada, K. Satoh, Y. Gotoh, E. Nishida and T. Noro, Mitsubishi Electric Corporation, Japan; H. Takegahara, Tokyo Metropolitan Institute of Technology, Tokyo, Japan; H. Nagano and K. Nakamaru, National Space Development Agency of Japan
IEPC-93-170
500 Hour Tests of the T5 Ion Thruster with Dual and Triple Grid Extraction Systems...........1500
S. Watson, P. Hurford, A. Martin, C. Banks, R. Eaton, M. Harvey, W. Moulford, and A. Pearce, Culham Laboratory, Oxfordshire, UK

IEPC-93-171
Erosion Measurements for Two- and Three-Grid Ion Thruster Extraction Systems................1509
A. Martin, C. Banks, R. Eaton, P. Hurford and W. Moulford, Culham Laboratory, Oxon, UK

IEPC-93-172
Test-to-Failure of a Two-Grid, 30-cm-dia. Ion Accelerator System..................................1519
J. Brophy, J. Polk and L. Pless, JPL, Pasadena, CA

IEPC-93-173
Charge-Exchange Grid Erosion Study for Ground-Based and Space-Based Operations of........1539
Ion Thrusters
X. Peng, W. Ruyten, and D. Keefer, CSTAR/UTSI, Tullahoma, TN

IEPC-93-174
Effects of Design and Operating Conditions on Accelerator-Grid Impingement Current.........1545
J. Monheiser and P. Wilbur, Colorado State University, Fort Collins, CO

IEPC-93-175
Erosion Characteristics of Two-Grid Ion Accelerating Systems.....................................1556
V. Rawlin, NASA Lewis, Cleveland, OH

IEPC-93-176
Probabalistic Analysis Ion Engine Accelerator Grid Life..1602
J. Polk, N. Moore, L. Newlin, J. Brophy and D. Ebbeler, JPL, Pasadena, CA

IEPC-93-177
Ion Thruster Lifetime Limitations Imposed by Sputtering Processes....................................1617
D. Fearn, DRA, Farnborough, UK

IEPC-93-178
Particle Simulation of Grid Erosion for Three-Grid Ion Trusters..................................1635
Q. Zhang, ERC, Inc., Tullahoma, TN; X. Peng and D. Keefer, University of Tenn.
Space Institute, Tullahoma, TN

IEPC-93-179
Extraction System Design and Modeling Using Computer Codes.......................................1644
R. Bond and P. Latham, Culham Laboratory, Oxon, UK

IEPC-93-181
Numerical Simulation of the Performance of a Radiation-cooled 1 kW DC Arcjet Thruster......1655
H. Okamoto and M. Nishida, Kyushu University, Fukuoka, Japan; K. Tanaka, Mitsubishi Electric Company, Hyogo, Japan; A. Beylich, Stosswellenlabor, Germany

IEPC-93-182
Development of a Numerical Model of the Nozzle Flow in Low Power Arcjet Thrusters.........1662
A. Ciucci, Centrospazio, Pisa, Italy; L. d'Agostino, University of Pisa, Pisa, Italy
On the Effects of Swirl in Arcjet Thruster Flows
V. Babu, S. Aithal and V. Subramaniam, Ohio State University, Columbus, OH

Behavior of Arc Column in Arcjet Constrictor
T. Yamada, K. Toki, and K. Kuriki, Institute of Space and Astronautical Science, Kanagawa, Japan

Anode Heat Loss and Current Distributions in DC Arcjets
K. Fujita and Y. Arakawa, University of Tokyo, Tokyo, Japan

Effect of a Pulsed Magnetic Field on Arcjet Operation
N. Tiliakos and R. Burton, University of Illinois, Urbana, IL

Performance Calculation of Arcjet Thrusters -- The Three Channel Model
B. Glocker, H. Schrade, and M. Auweter-Kurtz, University of Stuttgart, Stuttgart, Germany

Theoretical Modeling of Magnetoplasmadynamic Arcjets
P. Mikellides and P. Turchi, Ohio State University, Columbus, OH; N. Roderick, University of New Mexico, Albuquerque, NM

Thrust Production Theory of Electromagnet/Thermal Hybrid Arcjets
A. Sasoh, Tohoku University, Sendai, Japan

Calculation of a Nozzle Type MPD Thruster and Comparison with Measurements
P. Sleziona, M. Auweter-Kurtz, C. Boie, H. Kurtz, H. Schrade, and T. Wegmann, University of Stuttgart, Stuttgart, Germany

Mechanisms of Anode Power Deposition in a Low Pressure Free Burning Arc
G. Soulas, Ohio State University, Columbus, OH; R. Myers, Sverdrup Technology, Inc., Brookpark, OH

An Experimental Study of Lithium Dispenser Cathodes in the MPD Thruster

Diagnostic Experiment and Numerical Analysis of the One-Dimensional MPD Flowfields
H. Tahara, T. Tsubaki, Y. Kagaya, Y. Tsubakishita, and T. Yoshikawa, Osaka University, Osaka, Japan
IEPC-93-198
Development of Ion Thruster System for Interplanetary Missions .. 1805
H. Kuninaka, Institute of Space and Astronautical Science, Kanagawa, Japan; N. Hiroe, K. Kitaoka and Y. Ishikawa, Nihon University, Chiba, Japan; K. Nishiyama, University of Tokyo, Japan; Y. Horiuchi, NEC, Kanagawa, Japan

IEPC-93-200
A Mission to Pluto Using Nuclear Electric Propulsion .. 1810
D. Fearn, DRA, Farnborough, UK

IEPC-93-202
Mission Factors Affecting Cost Optimization of Solar Electric Orbital Transfer Vehicles 1825
T. Miller and G. Seaworth, McDonnell Douglas Aerospace, Huntington Beach, CA

IEPC-93-203
Operational Requirements for Cost Effective Payload Delivery with Solar Electric Propulsion 1835
K. Zondervan and A. Chan, The Aerospace Corporation, Los Angeles, CA; C. Feuchter, Kirtland AFB, NM; W. Smith, Los Angeles AFB, Los Angeles, CA

IEPC-93-204
Centaur-Derived Propellant Supply System for a Solar Electric Orbit Transfer Vehicle 1846
J. Schuster, J. LeMay, E. Morss and G. Williams, General Dynamics, San Diego, CA

IEPC-93-205
High Altitude Orbit Raising with On-Board Electric Propulsion ... 1861
B. Free, Scionics, Inc., Derwood, MD

IEPC-93-206
Effect of Volume Considerations on the Design of an Electric Orbital Transfer Vehicle 1878
G. Seaworth and T. Miller, McDonnell Douglas Aerospace, Huntington Beach, CA

IEPC-93-207
The Effect of Solar Array Degradation in Orbit-Raising with Electric Propulsion 1889
A. Fitzgerald, Orbital Sciences Corporation, Chandler, AZ

IEPC-93-208
Low Power Ground Based Laser Illumination for Electric Propulsion Applications 1896
M. LaPointe and S. Oleson, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-209
Liquid Space Optical Theory of Manned Starflight with Earthly Applications 1922
J. Bloomer, Discraft Corporation, Portland, OR

IEPC-93-210
High Specific Impulse Experiments with 1.5- and 5-kW Thermal Arcjets .. 1934
M. Riehle, M. Auweter-Kurtz, and H. Kurtz, University of Stuttgart, Stuttgart, Germany

IEPC-93-211
Performance of Advanced Concept Hydrogen Arcjet Anodes ... 1949
G. Butler, R. Cassady, W. Hoskins, D. King, and A. Kull, Rocket Research Company, Redmond, WA
IEPC-93-213
Parametric Test Results of a Low Power Arcjet...1963
G. Capecchi, F. Scorteci, F. Repola and M. Andrenucci, Centrospazio, Pisa, Italy

IEPC-93-214
Comparison of Experimental and Numerical Results for Radiation Cooled and Water........1979
Cooled Hydrogen Arcjets
T. Moeller, D. Keefer, and R. Rhodes, UTSI, Tullahoma, TN

IEPC-93-215
Hydrogen Arcjet Technology Status...1989
F. Curran, NASA Lewis, Cleveland, OH; L. Caveny, Ballistic Missile Defense
Organization, Washington, DC

IEPC-93-216
W. Hoskins, A. Kull, G. Butler and W. Nesser, Rocket Research Company, Redmond,
WA

IEPC-93-217
Non-Equilibrium Modeling of Hydrogen Arcjet Thrusters..2020
R. Rhodes and D. Keefer, UTSI, Tullahoma, TN

IEPC-93-218
Nonequilibrium Numerical Simulation of Radiation-Cooled Arcjet Thrusters......................2032
S. Miller and M. Martinez-Sanchez, MIT, Cambridge, MA

IEPC-93-219
Axial Emission Diagnostics of a Low Power Hydrogen Arcjet Thruster...............................2051
P. Storm and M. Cappelli, Stanford University, Stanford, CA

IEPC-93-220
A Direct Comparison of Hydrogen Arcjet Truster Properties to Model Predictions.................2065
M. Cappelli, J. Liebeskind, R. Hanson, Stanford University, Stanford, CA; G. Butler
and D. King, Rocket Research Company, Redmond, WA

IEPC-93-221
Development and Testing of a 100 kW Radiation Cooled Thermal Hydrogen Arcjet Thruster...2079
T. Golz, M. Auweter-Kurtz and H. Kurtz, University of Stuttgart, Stuttgart, Germany

IEPC-93-222
Development and Investigation of Characteristics of Increased Power SPT Models.................2087
B. Arkhipov, N. Maslennikov and V. Murashko, Fakel Enterprises, Kaliningrad,
Russia; A. Veselovzorov, A. Morozov and I. Pokrovski, Institute of Atomic Energy,
Moscow, Russia; V. Gavryushin and S. Khartov, Moscow Aviation Institute, Moscow,
Russia; V. Kim and V. Kozlov, Institute of Applied Mechanics and Electodynamics,
Moscow, Russia

IEPC-93-223
Development Status of the SPT Mk II Thruster...2097
D. Valentian, SEP, Moissy Cramayel, France; A. Bugrova, Mirea, Moscow, Russia;
A. Morozov, Institute of Atomic Energy, Moscow, Russia
IEPC-93-225
Development of 4-kW Hall-Type Electric Thruster ...2107
A. Koroteev, V. Petrosov, V. Baranov and A. Vasin, Scientific-Research Institute of Thermal Processes, Moscow, Russia; J. Wetch and S. Wong, International Scientific Products, San Jose, CA

IEPC-93-226
Theoretical and Experimental Analysis of Stationary Plasma Thruster Operation2112
D. Valentian and J. Bugeat, SEP Aerodrome de Melun Villaroche, Moissy Cramayel, France; R. Tchuyan, S. Kharton, L. Latyshev, and V. Sierovaiskiy, Moscow Aviation Institute, Moscow, Russia; G. Cirri, Proel, Florence, Italy

IEPC-93-228
Anode Layer Thrusters: State-of-the-Art and Perspectives ...2120
E. Lyapin, V. Garkusha, and A. Semenkin and S. Tverdokhlebov, Central Research Institute of Machine Building, Kaliningrad (Moscow Region), Moscow

IEPC-93-230
Two-Dimensional Numerical Model of Plasma Flow in a Hall Thruster2125
K. Komurasaki, Nagoya University, Nagoya, Japan; Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-231
Investigation of Erosion in Anode Layer Thrusters and Elaboration High Life Design2134
Scheme
A. Semenkin, Central Research Institute of Machine Building, Kaliningrad (Moscow Region), Moscow

IEPC-93-232
Study of Double-Stage Anode Layer Thruster Using Inert Gases2140
S. Tverdokhlebov, Central Research Institute of Machine Building, Kaliningrad (Moscow Region), Moscow

IEPC-93-233
On Use of Alkali Metals as SPT Propellants ..2146
V. Petrosov, V. Baranov, A. Vasin and Yu. Nazarenko, Scientific-Research Institute of Thermal Processes, Moscow, Russia

IEPC-93-234
Measurements of the Electromagnetic Emissions from the T5 Ion Thruster2150
S. Chanda and F. Mawdsley, ERA, Ltd., UK; R. Brown, Matra Marconi Space, Ltd., UK; S. Watson, Culham Laboratory, UK; A. Malik, Imperial College, London, UK; D. Fearn, DRA, Farnborough, UK

IEPC-93-235
Beam Characteristics Evaluation of ETS-VI Xenon Ion Thruster2166
H. Takegahara, Y. Kasai, Tokyo Metropolitan Institute of Technology, Tokyo, Japan; Y. Gotoh, Mitsubishi Electric Company, Japan; K. Miyazaki, Y. Hayakawa, and S. Kitamura, National Aerospace Laboratory, Japan; H. Hagano and K. Nakamaru, NASDA, Japan

IEPC-93-236
Electric Probe Measurements in the Plume of the UK-10 Ion Thruster2175
P. deBoer, The Aerospace Corporation, Los Angeles, CA
IEPC-93-237
Microwave Diagnostics for Ion Engine Plumes...2185
S. Janson, The Aerospace Corporation, Los Angeles, CA.

IEPC-93-239
The Effect of Propellant Selection on Mission Cost for the UK-25 Inert Gas Ion Thruster........2190
C. Edwards and S. Gabriel, University of Southampton, Southampton, UK

IEPC-93-242
Plasma Particle Simulation in Cusped Ion Thrusters...2198
M. Hirakawa and Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-243
Plasma Properties and Ignition Characteristics of RF Ion Source......................................2205
H. Takegahara, T. Ohyama, K. Iwakura and T. Iwata, Tokyo Metropolitan Institute of Technology, Tokyo, Japan

IEPC-93-244
High Velocity Ion Source for Space Experiments...2211
V. Grigoryan, S. Kalitin, V. Obukhov, and M. Shalamov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-246
Plasma Contactor Development for Space Station..2216
M. J. Patterson, J. A. Hamley, and C. Sarmiento, NASA Lewis, Cleveland, OH; D. Manzella, T. Sarver-Verhey and G. Souls, Sverdrup Technology, Brookpark, OH; A. Nelson, Purdue University, West Lafayette, IN

IEPC-93-247
Main Features of Physical Processes in Stationary Plasma Thrusters................................2245
A. Bugrova, A. Desiatskov, V. Kharchevnikov and A. Morozov, Moscow Institute of Radiotechnic, Electronics, and Automatics, Moscow, Russia

IEPC-93-249
Numerical Simulation of Hydrogen Arcjet Performance..2252
G. Butler, A. Kull, and D. King, Rocket Research Company, Redmond, WA

IEPC-93-250
Power Console Development for NASA's Electric Propulsion Outreach Program.................2264
L. Pinero, M. Patterson, and V. Satterwhite, NASA Lewis, Cleveland, OH

IEPC-93-251
Operation of a Brassboard PCU With a low Power Arcjet..2284
R. Stefano and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy; G. Parisi and Detoma, FLAT CIEI - SEPA, Torino, Italy

AUTHOR INDEX ..2302

SUBJECT INDEX ..2314

APPENDIX A - TECHNICAL SESSION PROGRAM ..2320

APPENDIX B - MAILING ADDRESSES ..2336
TABLE OF CONTENTS

VOLUME 1
PAPERS IEPC-93-001 - IEPC-93-087
PAGES 1 - 803

VOLUME 2
PAPERS IEPC-93-088 - IEPC-93-176
PAGES 804 - 1616

VOLUME 3
PAPERS IEPC-93-177 - IEPC-93-251
AUTHOR INDEX, SUBJECT INDEX, APPENDICES
PAGES 1617 - 2341
IEPC-93-001
Development and Application of Electric Propulsion Thrusters in Russia..................................
A. Bober and N. Maslennikov, Fakel Enterprises, Kaliningrad, Russia; M. Day,
Space Systems/Loral, Palo Alto, CA; G. Popov and Yu. Rylov, Moscow Aviation
Institute, Moscow, Russia

IEPC-93-002
An Overview of the Ballistic Missile Defense Organization's Electric Propulsion Program.........12
L. Caveny, Ballistic Missile Defense Organization, Washington, DC; F. Curran,
NASA Lewis, Cleveland, OH; J. Brophy, JPL, Pasadena, CA

IEPC-93-003
European Electric Propulsion Activities in the Era of Application..............................25
C. Bartoli and G. Saccoccia, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-004
An Overview of the Air Force's Electric Propulsion Program... 39
D. Perkins, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-005
Review of Electric Propulsion Activities in Japan...45
Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-006
An Overview of NASA's Electric Propulsion Program.. 63
G. Bennett, NASA HQ, Washington, DC; F. Curran and D. Byers, NASA Lewis,
Cleveland, OH; J. Brophy and J. Stocky, JPL, Pasadena, CA

IEPC-93-007
Flight Qualification of a 1.8 kW Hydrazine Arcjet System........................... 93
R. Smith, S. Yano, K. Armbruster and C. Roberts, Rocket Research Company,
Redmond, WA; D. Lichten and J. Beck, Martin Marietta Astro Space, Princeton, NJ

IEPC-93-008
Development and Qualification Test of a SPT Electric Propulsion System for "GALS"..............108
Spacecraft
A. Bober, K. Kozubsky, G. Komarow, N. Maslennikov, Fakel Enterprises,
Kaliningrad, Russia; A. Koslov, A. Romashko, NPO PM, Krasnoyarsk, Russia

IEPC-93-009
Development of Ion Engine System For ETS-VI...116
S. Shimada, K. Satoh, Y. Gotoh, E. Nishida, I Terukina and T. Nora, Mitsubishi
Electric Company, Japan; H. Takegahara, Tokyo Metropolitan Institute of Technology,
Tokyo, Japan; K. Nakamaru and H. Nagano, National Space Development Agency of
Japan, Japan

IEPC-93-010
Design, Qualification, and On-Orbit Performance of the ATLAS Plasma Contactor................125
J. R. Beattie, Hughes Research Laboratory, Malibu, CA; J. Marshall, J. Burch and W.
Gibson, Southwest Research Institute, San Antonio, Texas
IEPC-93-038
Analysis and Experiments of a Whistler-Wave Plasma Thruster...............................361
E. Hooper, S. Ferguson, M. Makowski and B. Stallard, Lawrence Livermore National
Laboratory, Livermore, CA; J. Power, NASA Lewis, Cleveland, OH

IEPC-93-040
Microwave Plasma Contactor...369
H. Kuninaka, Institute of Space and Astronautical Science, Kanagawa, Japan
N. Hiroe, K. Kitaoaka and Y. Ishikawa, Nihon University, Chiba, Japan
K. Nishiyama, University of Tokyo, Tokyo, Japan

IEPC-93-041
Plasma Contactor Device Based on Hollow Cathode Technology for Spacecraft Charging.....374
Neutralization and Tethered System Applications: Review of Italian National Program
G. Cirri, G. Matticari, M. Minucci, G. Noci, A. Severi, and P. Amatulli, Proel
Technologie, Firenze, Italy; F. Svelto, Italian Space Agency, Rome, Italy

IEPC-93-042
Hollow Cathode Heater Development for the Space Station Plasma Contactor...............384
G. Soulsas, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-043
Design of a High Efficiency Power Processor for the Russian Stationary Plasma Thruster.....396
G. Fischer, T. Colbert, and M. Day, Space Systems/Loral, Palo Alto, CA; J. Kahn
and H. Kaufman, Front Range Research, Fort Collins, CO; K. Kozubsky and V.
Sokolov, Fakel Enterprises, Kaliningrad, Russia

IEPC-93-044
Power Electronics Development for the SPT-100 Thruster.....................................405
J. Hamley, G. Hill, and J. Sankovic, NASA Lewis, Cleveland, OH

IEPC-93-045
Arcjet Power Conditioning Unit: Design Characteristics and Preliminary Tests...............416
G. Botto and M. Carpita, Ansaldo Ricerche, Genova, Italy; G. Parisi, E. Detoma,
FIAT-CIEI, Torino, Italy; W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-046
A 1.8 kW Static Arcjet Simulator..424
E. Detoma and G. Parisi, UTI SEPA, Torino, Italy; W. Deininger, BPD Difesa e Spazio,
Colleferro, Italy

IEPC-93-047
Development of a Power Control Unit for a Low Power Arcjet..................................434
H. Willenbockel, G. Matthaeus, M. Kinnersley, DASA ERNO, Bremen, Germany

IEPC-93-048
Design Fabrication and Test of a 26 kW Arcjet and Power Conditioning Unit................448
C. Vaughan, R. Cassady and J. Fisher, Rocket Research Company, Redmond, WA

IEPC-93-049
Achieving Reliable, Repeatable Starts of a 26 kW Arcjet....................................460
R. Aadland, C. Vaughan, and W. Hoskins, Rocket Research Company, Redmond, WA,
R. Kay, Pacific Electro Dynamics, Redmond, WA
IEPC-93-050
Propellant Breakdown Mechanisms in an Arcjet..473
D. Tilley, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-052
Development of a Power Electronics Unit for the Space Station Freedom Plasma Contactor......488
J. Hamley, G. Hill and M. Patterson, NASA Lewis, Cleveland, OH; J. Saggio and F.
Terdan, ANAEX Corp., Cleveland, OH; J. Mansell, Case Western Reserve University,
Cleveland, OH

IEPC-93-053
Power Processing Units for High-Powered Nuclear Electric Propulsion with MPD Thrusters......500
R. Frisbee, R. Das and S. Krauthamer, JPL, Pasadena, CA

IEPC-93-054
Space Surveillance, Track and Autonomous Reposition – SSTAR Program..........................507
S. Sneegas and R. Vondra, AF Phillips Laboratory, Albuquerque, NM; R. Rosenthal,
TRW, Redondo Beach, CA

IEPC-93-055
NEPSTP - An International Testbed for Xenon Electric Propulsion..525
G. Herbert and G. Cameron, John Hopkins APL, MD L. Caveny, Ballistic Missile
Defense Organization, Washington, DC

IEPC-93-056
Development and Utilization Objectives of a Low-Power Arcjet for the P3D (OSCAR) Satellite...538
E. Messerschmid, D. Zube and H. Kurtz, University of Stuttgart, Stuttgart, Germany
K. Meinzer AMSAT Deutschland e. V., Marburg, Germany

IEPC-93-057
Overview of the Air Force ESEX Flight Experiment..549
A. Sutton, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-058
Development of an MPD Thruster System for the EPEX Space Test....................................554
K. Toki, Y. Shimizu, and K. Kuriki, Institute of Space and Astronautical Science,
Kanagawa, Japan; H. Suzuki, Ishikawajima-Harima Heavy Industries, Co., Tokyo,
Japan; Y. Kunii, Mitsubishi Electric Corporation, Kanagawa, Japan

IEPC-93-059
Ion Propulsion: A Key Enabler on ESA's DRTM Programme...562
H. Bassner, DASA, Munich, Germany; M. Silvi, Alenia Spazio S.p.A, Rome, Italy; L.
van Holtz and C. Bartoli, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-061
Electric Propulsion: The Next Real Breakthrough in Space Transportation................................573
R. Sackheim and R. Rosenthal, TRW, Redondo Beach, CA

IEPC-93-063
TROPIX: A Solar Electric Propulsion Flight Experiment..583
J. Hickman and B. Hillard, NASA Lewis, Cleveland, OH; S. Oleson, Sverdrup
Technology, Inc., Brook Park, OH
IEPC-93-064
NEP Early Flight Program: System Performance and Development Considerations
M. Doherty and J. George, NASA Lewis, Cleveland, OH

IEPC-93-065
Potential NASA Early Flight Nuclear Electric Propulsion Missions
H. Bloomfield, NASA Lewis, Cleveland, OH

IEPC-93-066
Numerical Calculation of a Cylindrical MPD Thruster
P. Sleziona, M. Auweter-Kurtz and H. Schrade, University of Stuttgart, Stuttgart, Germany

IEPC-93-067
Anomalous Ionization in the MPD Thruster
E. Choueiri and H. Okuka, Princeton University, Princeton, NJ

IEPC-93-068
Space Charge Instability, Current Chopping and Anomalous Transport in Stationary MPD Thruster Flows
H. Wagner, M. Auweter-Kurtz and E. Messerschmid, University of Stuttgart, Stuttgart, Germany

IEPC-93-069
Nonlinear Development of Space Charge Instabilities in MPD Thruster Flows
M. Maurer, MAN Technologie AG, Muchen, Germany; H. Kaeppeler, University of Stuttgart, Stuttgart, Germany

IEPC-93-071
Ionization Rate Models and Inlet Ignition in Self-Field MPD Thrusters
E. Sheppard and M. Martinez-Sanchez, MIT, Cambridge, MA

IEPC-93-072
Numerical Fluid Simulation of an MPD Thruster with Real Geometry
G. Caldo, E. Choueiri, A. Kelly and R. Jahn, Princeton University, Princeton, NJ

IEPC-93-073
Analytical Study on Nonequilibrium Flows in Self-Field MPD Thrusters
T. Shoji, K. Ogiwara and I. Kimura, Tokai University, Kanagawa, Japan

IEPC-93-074
Numerical Simulation of Cylindrical Self-Field MPD Thrusters With Multiple Propellants
M. LaPointe, NASA Lewis, Cleveland, OH

IEPC-93-076
Research of Plasma Acceleration Processes in Self-Field and Applied Magnetic Fields Thrusters
V. Tikhonov, S. Semenikhin, and, Moscow Aviation Institute, Moscow, Russia
V. Alexandrov, G. Dyakonov and G. Popov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-077
Plasma Flow Investigation in MPD-Thruster
N. Barabanov, Moscow Aviation Institute, Moscow, Russia
IEPC-93-078
Design and Development of a 3- to 10-kW Ammonia Arcjet..710
K. Goodfellow and J. Polk, JPL, Pasadena, CA

IEPC-93-079
High Specific Power Ammonia and Hydrogen Arcjet Development....................................724
G. Aston, J. Kolts and M. Aston, Electric Propulsion Laboratory, Monument, CO

IEPC-93-081
A Review of the ESA ASTP-3 MPD/Arcjet Development Program (1988-1993)....................734
W. Deininger, BPD Difesa e Spazio, Colleferro, Italy; M. Andrenucci, Centrospazio,
Pisa, Italy; G. Saccoccia, European Space Agency, Noorwijk, The Netherlands

IEPC-93-082
Performance Testing of a 1 kW Arcjet Using Hydrazine.. 754
R. Di Stefano, W. Deininger and E. Tosti, BPD Difesa e Spazio, Colleferro, Italy; K.
Armbruster, Rocket Research, Redmond, WA

IEPC-93-083
Intermittent Operation of a Low Power Arcjet...772
T. Yamada, Y. Iwamotto, K. Ogiwara, K. Toki, and K. Kuriki, Institute of Space and
Astronautical Science, Kanagawa, Japan

IEPC-93-084
Experimental Investigation on Arcjets Performance and Possible Applications to Current........779
Mission Concepts with Low-Power Availability
F. Scortecci and F. Paganucci, Centrospazio, Pisa, Italy; G. Saccoccia and J.
Gonzalez, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-087
Development and Demonstration of a 600 Second Mission Average Arcjet...........................789
P. Lichon, Rocket Research Company, Redmond, WA
J. Sankovic, NASA Lewis, Cleveland, OH;

IEPC-93-088
Development of 10 kWe/N Radiatively-Cooled Arcjet Technology.....................................804
E. Tosti and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-091
Performance Evaluation and Life Testing of the SPT-100... 823
C. Garner, J. Polk, L. Pless, K. Goodfellow and J. Brophy,
JPL, Pasadena, CA

IEPC-93-092
Effect of Background Nitrogen and Oxygen on Insulator Erosion in the SPT-100.................840
J. Kahn, V. Zhurin, K. Kozubsky and T. Randolph, Front Range Research, Fort
Collins, CO;

IEPC-93-093
Facility Effects on SPT Thruster Testing...844
T. Randolph and M. Day, Space Systems/Loral, Palo Alto, CA; H. Kaufman and V.
Zhurin, Front Range Research, Fort Collins, CO; V. Kim, Moscow Aviation Institute,
Moscow, Russia; K. Kozubsky, Fakel Enterprises, Kaliningrad, Russia
IEPC-93-094
Performance Evaluation of the Russian SFT-100 Thruster at NASA LeRC
J. Sankovic, J. Hamley, and T. Haag, NASA Lewis, Cleveland, OH

IEPC-93-095
Dynamic Characteristics of Closed Drift Thrusters
S. Zhurin, J. Kahn, H. Kaufman, K. Kozubsky and M. Day, Front Range Research, Fort Collins, CO

IEPC-93-096
Stationary Plasma Thruster Plume Characteristics
R. Myers and D. Manzella, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-097
Stationary Plasma Thruster Plume Emissions
D. Manzella, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-098
Preliminary Far-Field Plume Sputtering of the Stationary Plasma Thruster (SPT-100)
E. Pencil, NASA Lewis, Cleveland, OH

IEPC-93-099
Prediction of Electric Thruster Lifetime
V. Baranov, A. Vasin, A. Kalyayev, V. Petrosov, Scientific Research Institute of Thermal Processes, Moscow, Russia

IEPC-93-100
Electric Rocket Engine Accelerated Test Concept
V. Baranov, A. Vasin, A. Kalyayev, V. Petrosov, Scientific Research Institute of Thermal Processes, Moscow, Russia

IEPC-93-101
Stationary Plasma Thruster (SPT) Development Steps and Future Perspective
A. Morozov, Institute of Atomic Energy, Moscow, Russia

IEPC-93-102
Flight Test of the RITA Experiment on EURECA
H. Bassner, H. Berg, R. Kukies, H. Muller, DASA, Munich, Germany

IEPC-93-104
A Comprehensive Test and Evaluation Program for the UK-10 (T5) Ion Engine
M. Crofton, Aerospace Corporation, El Segundo, CA

IEPC-93-105
Recent Ion Thruster Developments at Giessen University
K. Groh, P. Fahrenbach, and H. Loeb, University of Giessen, Giessen, Germany

IEPC-93-106
Flight Qualification of an 18-mN Xenon Ion Thruster
J. Beattie, J. Williams, and R. Robson, Hughes Research Laboratories, Malibu, CA
<table>
<thead>
<tr>
<th>IEPC-93-107</th>
<th>Low Thrust Ion Propulsion: Development Activities at Proel Technologie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G. Cirri, G. Matticari and G. Noci, Proel Technologie, Firenze, Italy; M. Rossi and J. Sabbagh, Italian Space Agency, Rome, Italy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-108</th>
<th>Performance of the NASA 30-cm Ion Thruster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Patterson and T. Haag, NASA Lewis, Cleveland, OH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-109</th>
<th>Review of the Qualification Activities on the Neutralizer for the RIT 10 Ion Thruster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G. Cirri, A. Cipriani, G. Matticari, A. Severi, and, Proel Technologie, Firenze, Italy; C. Bartoli, G. Saccoccia and H. Von Rohoden, ESA/ESTEC, Noordwijk, The Netherlands;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Brophy, L. Pless, J. Mueller and J. Anderson, JPL, Pasadena, CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-111</th>
<th>Comparison of Erosion Rates of Carbon-Carbon and Molybdenum Ion Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Meserole and D. Hedges, Boeing Defense and Space Group, Seattle, WA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-112</th>
<th>Fabrication of Carbon-Carbon Grids for Ion Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Mueller, J. Brophy, C. Garner and J. Brophy, JPL, Pasadena, CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-115</th>
<th>Performance of Hot Cathode MPD Thrusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F. Paganucci and M. Andrenucci, Centrospazio, Pisa, Italy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-116</th>
<th>Evaluation of Externally Heated Pulsed MPD Thruster Cathodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. Myers, Sverdrup Technology, Inc., Brookpark, OH; M. Domonkos, University of New Mexico, Albuquerque, NM; A. Gallimore, University of Michigan, MI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-117</th>
<th>High-Current Stationary Plasma Accelerator of High Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. Ageyev and Ostrovsky, Scientific-Production Association "Energiya", Kaliningrad, Russia; V. Petrosov, Scientific-Research Institute of Thermal Processes, Moscow, Russia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-118</th>
<th>Control and Minimization of Anode Fall in a Quasisteadt Nozzle-based Coaxial Plasma Thruster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Scheuer, R. Hoyt, K. Schoenberg, R. Gerwin, R. Moses and I. Henins, Los Alamos National Laboratory, Los Alamos, NM; R. Mayo and D. Black, North Carolina State University, Raleigh, NC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEPC-93-119</th>
<th>Development of a Superconducting Electromagnet for Applied Field Arcjet Thrusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F. Scortecci, G. Capecchi, Centrospazio, Pisa, Italy; M. Andrenucci, University of Pisa, Pisa, Italy; G. Mei and R. Garr'e, Europa Metalli-LMI, Lucca, Italy</td>
</tr>
</tbody>
</table>
IEPC-93-120
Role of Anode Throat in MPD Arcjet.................................1093
I. Funaki, K. Toki and K. Kuriki, Institute of Space and Astronautical Science,
Kanagawa, Japan

IEPC-93-121
Component Erosion in 100-kW Class Applied-Field, Water-Cooled MPD Thrusters...............1100
M. Mantenieks, NASA Lewis, Cleveland, OH; R. Myers, Sverdrup Technology, Inc.,
Brookpark, OH

IEPC-93-122
Experimental Comparison of Steady State Nozzle Type and Cylindrical MPD Thrusters at......1124
High Current Levels
T. Wegmann, M. Auweter-Kurtz, H. Habiger, H. Kurtz, and H. Schrade, University of
Stuttgart, Stuttgart, Germany

IEPC-93-123
Optical Diagnostics of High Current Pulsed Arc in High Density Gas..........................1134
A. Voronov and V. Zhuravlev, Institute of Problems of Electrophysics of Russian
Academy of Science, St. Petersburg, Russia

IEPC-93-124
Electrostatic Probes for the Investigation of Arc-Driven Electric Propulsion Devices...............1137
H. Habiger, M. Auweter-Kurtz and H. Kurtz, University of Stuttgart, Stuttgart,
Germany

IEPC-93-125
Microinstabilities in High-Power MPD Systems: Preliminary Diagnostics..........................1148
E. Bowman, Purdue University, West Lafayette, IN; D. Tilley, AF Phillips
Laboratory, Edwards AFB, CA

IEPC-93-126
Camber Effects on Plume Expansion for a Low-Power Hydrogen Arcjet..........................1159
I. Boyd, Cornell University, Ithaca, NY; D. Beattie and M. Cappelli, Stanford
University, Stanford, CA

IEPC-93-127
Laser Induced Fluorescence Measurements on the Plume from a 1 kW Arcjet Operated on.......1169
Simulated Ammonia
W. Ruyten, D. Burtner and D. Keefer, CSTAR/UTSI, Tullahoma, TN

IEPC-93-128
Time Resolved Measurement of 1 kW Arcjet Plumes using Current Modulation Velocimetry....1177
and Triple Langmuir Probes
J. Pobst, J. Schilling, D. Erwin, University of Southern California, Los Angeles, CA;
R. Spores, AF Phillips Laboratory, Edwards AFB, CA

IEPC-93-129
Vibrational Non-Equilibrium in Arcjet Flows..1185
V. Babu, S. Aithal and V. Subramaniam, Ohio State University, Columbus, OH

IEPC-93-130
The Use of Pulsed Electron Beam Fluorescence for Arcjet Plume Diagnostics......................1201
J. Schilling, J. Pobst, D. Erwin, University of Southern California, Los Angeles, CA
IEPC-93-131
LIF Measurements of Species Velocities in an Arcjet Plume..1208
J. Liebeskind, R. Hanson and M. Cappelli, Stanford University, Stanford, CA

IEPC-93-132
Arcjet Plume Studies Using Molecular Beam Mass Spectrometry......................................1212
J. Pollard, Aerospace Corporation, Los Angeles, CA

IEPC-93-133
Optical Measurement and Numerical Analysis of Medium-Power Arcjet Non-Equilibrium......1228
Flowfields
H. Tahara, N. Uda, K. Onoe, Y. Tsubakishita, and T. Yoshikawa, Osaka University,
Osaka, Japan

IEPC-93-134
Emission Spectroscopy of 1 kWe Arcjet Operating with Simulated Hydrazine.....................1238
E. Tosti and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy

IEPC-93-135
Effects of Nozzle Geometry on Plume Expansion for Small Thrusters.............................. 1256
D. Zelesnik, Ohio Aerospace Institute, Cleveland, OH; P. Penko, NASA Lewis,
Cleveland, OH; I. Boyd, Cornell University, Ithaca, NY

IEPC-93-136
Investigation of a 200 W Pulsed Arcjet...1266
G. Willmes and R. Burton, University of Illinois, Urbana-Champaign, IL

IEPC-93-137
Numerical Modelling of Rarefied Plasma Plumes Entering Neutral Environment Gas.............1275
A. Bishaev, V. Kalashnikiv, V. Kim, Research Institute of Applied Mechanics and
Electrodynamics, Moscow, Russia

IEPC-93-138
Plasma Expansion in a Low Power MPD Thruster with Variable Magnetic Nozzle...............1282
T. York and H. Kamhawi, Ohio State University, Columbus, OH

IEPC-93-140
An Investigation of Magnetic Field Effects on Plume Density and Temperature Profiles of......1292
an Applied-Field MPD Thruster
S. Bullock, NASA Lewis, Cleveland, OH; R. Myers, Sverdrup Technology, Inc.,
Brookpark, OH

IEPC-93-141
MPD Thruster Plume Diagnostics..1308
M. Andrenucci, University of Pisa, Pisa, Italy; F. Paganucci, and A. Turco,
Centrospazio, Pisa, Italy

IEPC-93-142
Modelling of Ion Thruster Plume Contamination.. 1318
R. Samanta Roy and D. Hastings, MIT, Cambridge, MA; N. Gatsonis, John Hopkins
University, Laurel, MD
<table>
<thead>
<tr>
<th>Conference Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEPC-93-143</td>
<td>Options and Tradeoff for a Spaceborne Arcjet Diagnostics Package</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>S. Ferrari and E. Detoma, FIAT-CIEI SEPA, Torino, Italy; W. Deininger and E. Tosti, BPD Difesa e Spazio, Colleferro, Italy; F. Scorteci and G. Capecchi, Centrospazio Ospedaletto, Pisa, Italy; J. Scialdone, NASA Goddard Space Flight Center, Greenbelt, MD</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-144</td>
<td>Radio Wave Refraction in Exhaust Plasma Plumes</td>
<td>1338</td>
</tr>
<tr>
<td></td>
<td>F. Gabdullin, V. Garkusha, A. Korsun, and E. Tverdokhlebova, Central Research Institute of Machine-Building, Kaliningrad (Moscow Region), Russia</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-145</td>
<td>Exhaust Plasma Plume Impacts on Onboard Antenna Field Distribution</td>
<td>1344</td>
</tr>
<tr>
<td></td>
<td>V. Garkusha, B. Borisov, A. Korsun, L. Sokolov, and V. Strashinski, Central Research Institute of Machine-Building, Kaliningrad (Moscow Region), Russia</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-147</td>
<td>Electromagnetic Interference of Stationary Plasma Thruster</td>
<td>1355</td>
</tr>
<tr>
<td></td>
<td>V. Brukhty, Scientific Research Institute of Thermal Processes, Moscow, Russia; K. Kirdyashev, Institute of Radioengineering and Electronics, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-148</td>
<td>Experimental and Analytical Evaluation of Electromagnetic Radiated Emissions from Electric Propulsion Systems</td>
<td>1361</td>
</tr>
<tr>
<td></td>
<td>K. Kirdyashev, Institute of Radioengineering and Electronics Russian Academy of Sciences, Fryazino, (Moscow Region), Russia</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-149</td>
<td>The Effect of Alkali Metal Electric Rocket Engines on Spacecraft</td>
<td>1367</td>
</tr>
<tr>
<td></td>
<td>V. Brukhty, V. Shutov and A. Smirnov, Scientific Research Institute of Thermal Processes, Moscow, Russia; M. Burgasov and A. Chirov, Moscow Aviation Institute, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-150</td>
<td>A Double Pendulum Precision Thrust Measurement Balance</td>
<td>1376</td>
</tr>
<tr>
<td></td>
<td>T. Yang, P. Liu, F. Chang-Diaz, H. Lander, R. Childs, H. Becker and S. Fairfax, MIT, Cambridge, MA</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-151</td>
<td>A Large, High Vacuum, High Pumping Speed Space Simulation Chamber for Electric Propulsion</td>
<td>1383</td>
</tr>
<tr>
<td></td>
<td>S. Grisnik, NASA, Cleveland, OH; J. Parkes, Sverdrup Technology, Brookpark, OH</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-154</td>
<td>Ion Beam Modeling in FEEP Thrusters</td>
<td>1391</td>
</tr>
<tr>
<td></td>
<td>M. Andrenucci, A. Ciucci, and S. Marcuccio, Centrospazio, Pisa, Italy</td>
<td></td>
</tr>
<tr>
<td>IEPC-93-155</td>
<td>Experimental Performance of Continuous and Pulsed FEEP Thrusters</td>
<td>1401</td>
</tr>
<tr>
<td></td>
<td>S. Marcuccio, A. Genovese, and M. Andrenucci, Centrospazio, Pisa, Italy</td>
<td></td>
</tr>
</tbody>
</table>
IEPC-93-156
Field Emission Electric Propulsion (FEEP) System Study..........................1412
S. Marcuccio and A. Genovese, Centrospazio, Pisa, Italy; M. Andrenucci, University of Pisa, Pisa, Italy; C. Bartoli, J. Gonzalez, and G. Saccoccia, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-157
Field Emission Electric Propulsion: Experimental Investigations on Microthrust FEEP.........1423
Thrusters
J. Gonzalez, G. Saccoccia and H. von Rohden, ESA/ESTEC, Noordwijk, The Netherlands

IEPC-93-158
Prospects of Microstructured Liquid Metal Ion Sources (MILMIS) for Field Emission........1432
Electric Propulsion (FEEP)
J. Mitterauer, Technische Universitat Wien, Wien, Austria

IEPC-93-159
Experimental Analysis of Coaxial Solid Propellant MPD Thruster with Segmented Anodes......1438
G. Paccani, University of Rome, Rome, Italy

IEPC-93-160
Development and Laboratory Tests of Erosion Pulsed Plasma Thrusters, Designed for the......1447
Attitude Control of Geostationary Satellite
N. Antropov, G. Popov and A. Rudikov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-165
Semi-Empirical Interior Ballistics Simulation Model of Arc Heated Light Gas Gun...............457
A. Glukhov, Institute of Problems of Electrophysics Russian Academy of Science, St.
Petersburg, Russia

IEPC-93-166
Use of Hydrogen Arcjet Thrusters for Diamond Synthesis..1461
M. Cappelli, M. Loh and J. Liebeskind, Stanford University, Stanford, CA

IEPC-93-167
Atomic Oxygen Simulation Using MPD Thruster Technology..................................1475
S. Gabriel, N. Wood, G. Roberts, and A. Tatnall, University of Southampton, Southampton, England

IEPC-93-168
Applications of Quasi-Steady MPD Arcjets to Material Processings – Ceramic Coatings by......1482
Means of MPD Spray
H. Tahara, T. Tsubaki, Y. Kagaya, Y. Tsubakishita, and T. Yoshikawa, Osaka University, Osaka, Japan

IEPC-93-169
Ion Thruster Endurance Test Using Development Model Thruster for ETS-VI.....................1488
S. Shimada, K. Satoh, Y. Gotoh, E. Nishida and T. Noro, Mitsubishi Electric Corporation, Japan; H. Takegahara, Tokyo Metropolitan Institute of Technology, Tokyo, Japan; H. Nagano and K. Nakamaru, National Space Development Agency of Japan
IEPC-93-170
500 Hour Tests of the T5 Ion Thruster with Dual and Triple Grid Extraction Systems........... 1500
S. Watson, P. Hurford, A. Martin, C. Banks, R. Eaton, M. Harvey, W. Moulford, and A. Pearce, Culham Laboratory, Oxfordshire, UK

IEPC-93-171
Erosion Measurements for Two- and Three-Grid Ion Thruster Extraction Systems............... 1509
A. Martin, C. Banks, R. Eaton, P. Hurford and W. Moulford, Culham Laboratory, Oxon, UK

IEPC-93-172
Test-to-Failure of a Two-Grid, 30-cm-dia. Ion Accelerator System... 1519
J. Brophy, J. Polk and L. Pless, JPL, Pasadena, CA

IEPC-93-173
Charge-Exchange Grid Erosion Study for Ground-Based and Space-Based Operations of...... 1539
Ion Thrusters
X. Peng, W. Ruyten, and D. Keefer, CSTAR/UTSI, Tullahoma, TN

IEPC-93-174
Effects of Design and Operating Conditions on Accelerator-Grid Impingement Current........... 1545
J. Monheiser and P. Wilbur, Colorado State University, Fort Collins, CO

IEPC-93-175
Erosion Characteristics of Two-Grid Ion Accelerating Systems...................................... 1556
V. Rawlin, NASA Lewis, Cleveland, OH

IEPC-93-176
Probabalistic Analysis Ion Engine Accelerator Grid Life.. 1602
J. Polk, N. Moore, L. Newlin, J. Brophy and D. Ebbeler, JPL, Pasadena, CA

IEPC-93-177
Ion Thruster Lifetime Limitations Imposed by Sputtering Processes.. 1617
D. Fearn, DRA, Farnborough, UK

IEPC-93-178
Particle Simulation of Grid Erosion for Three-Grid Ion Trusters... 1635
Q. Zhang, ERC, Inc., Tullahoma, TN; X. Peng and D. Keefer, University of Tenn.
Space Institute, Tullahoma, TN

IEPC-93-179
Extraction System Design and Modeling Using Computer Codes.. 1644
R. Bond and P. Latham, Culham Laboratory, Oxon, UK

IEPC-93-181
Numerical Simulation of the Performance of a Radiation-cooled 1 kW DC Arcjet Thruster...... 1655
H. Okamoto and M. Nishida, Kyushu University, Fukuoka, Japan; K. Tanaka,
Mitsubishi Electric Company, Hyogo, Japan; A. Beylich, Stosswellenlabor, Germany

IEPC-93-182
Development of a Numerical Model of the Nozzle Flow in Low Power Arcjet Thrusters........... 1662
A. Ciucci, Centrospazio, Pisa, Italy; L. d'Agostino, University of Pisa, Pisa, Italy
IEPC-93-183
On the Effects of Swirl in Arcjet Thruster Flows..1675
V. Babu, S. Aithal and V. Subramaniam, Ohio State University, Columbus, OH

IEPC-93-184
Behavior of Arc Column in Arcjet Constrictor..1695
T. Yamada, K. Toki, and K. Kuriki, Institute of Space and Astronautical Science,
Kanagawa, Japan

IEPC-93-185
Anode Heat Loss and Current Distributions in DC Arcjets..1703
K. Fujita and Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-186
Effect of a Pulsed Magnetic Field on Arcjet Operation...1714
N. Tiliakos and R. Burton, University of Illinois, Urbana, IL

IEPC-93-187
Performance Calculation of Arcjet Thrusters – The Three Channel Model.......................1720
B. Glocker, H. Schrade, and M. Auweter-Kurtz, University of Stuttgart, Stuttgart,
Germany

IEPC-93-189
Theoretical Modeling of Magnetoplasmadynamic Arcjets..1733
P. Mikellides and P. Turchi, Ohio State University, Columbus, OH; N. Roderick,
University of New Mexico, Albuquerque, NM

IEPC-93-190
Thrust Production Theory of Electromagnet/Thermal Hybrid Arcjets................................1746
A. Sasoh, Tohoku University, Sendai, Japan

IEPC-93-191
Calculation of a Nozzle Type MPD Thruster and Comparison with Measurements...............1751
P. Sleziona, M. Auweter-Kurtz, C. Boie, H. Kurtz, H. Schrade, and T. Wegmann,
University of Stuttgart, Stuttgart, Germany

IEPC-93-194
Mechanisms of Anode Power Deposition in a Low Pressure Free Burning Arc....................1760
G. Soulas, Ohio State University, Columbus, OH;
R. Myers, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-196
An Experimental Study of Lithium Dispenser Cathodes in the MPD Thruster.......................1786
J. Fillmore, W. von Jaskowsky, A. Kelly, and R. Jahn, Princeton University,
Princeton, NJ

IEPC-93-197
Diagnostic Experiment and Numerical Analysis of the One-Dimensional MPD Flowfields........1799
H. Tahara, T. Tsubaki, Y. Kagaya, Y. Tsubakishita, and T. Yoshikawa, Osaka
University, Osaka, Japan
IEPC-93-198
Development of Ion Thruster System for Interplanetary Missions.................................1805
H. Kuninaka, Institute of Space and Astronautical Science, Kanagawa, Japan; N. Hiroe, K. Kitaoka and Y. Ishikawa, Nihon University, Chiba, Japan; K. Nishiyama, University of Tokyo, Japan; Y. Horiuchi, NEC, Kanagawa, Japan

IEPC-93-200
A Mission to Pluto Using Nuclear Electric Propulsion..1810
D. Fearn, DRA, Farnborough, UK

IEPC-93-202
Mission Factors Affecting Cost Optimization of Solar Electric Orbital Transfer Vehicles......1825
T. Miller and G. Seaworth, McDonnell Douglas Aerospace, Huntington Beach, CA

IEPC-93-203
Operational Requirements for Cost Effective Payload Delivery with Solar Electric Propulsion
K. Zondervan and A. Chan, The Aerospace Corporation, Los Angeles, CA; C. Feuchter, Kirtland AFB, NM; W. Smith, Los Angeles AFB, Los Angeles, CA

IEPC-93-204
Centaur-Derived Propellant Supply System for a Solar Electric Orbit Transfer Vehicle.........1846
J. Schuster, J. LeMay, E. Morss and G. Williams, General Dynamics, San Diego, CA

IEPC-93-205
High Altitude Orbit Raising with On-Board Electric Propulsion....................................1861
B. Free, Scionics, Inc., Derwood, MD

IEPC-93-206
Effect of Volume Considerations on the Design of an Electric Orbital Transfer Vehicle.......1878
G. Seaworth and T. Miller, McDonnell Douglas Aerospace, Huntington Beach, CA

IEPC-93-207
The Effect of Solar Array Degradation in Orbit-Raising with Electric Propulsion..............1889
A. Fitzgerald, Orbital Sciences Corporation, Chandler, AZ

IEPC-93-208
Low Power Ground Based Laser Illumination for Electric Propulsion Applications............1896
M. LaPointe and S. Oleson, Sverdrup Technology, Inc., Brookpark, OH

IEPC-93-209
Liquid Space Optical Theory of Manned Starflight with Earthly Applications..................1922
J. Bloomer, Discraft Corporation, Portland, OR

IEPC-93-210
High Specific Impulse Experiments with 1.5- and 5-kW Thermal Arcjets...........................1934
M. Riehle, M. Auweter-Kurtz, and H. Kurtz, University of Stuttgart, Stuttgart, Germany

IEPC-93-211
Performance of Advanced Concept Hydrogen Arcjet Anodes...1949
G. Butler, R. Cassady, W. Hoskins, D. King, and A. Kull, Rocket Research Company, Redmond, WA
IEPC-93-225
Development of 4-kW Hall-Type Electric Thruster...2107
A. Koroteev, V. Petrosov, V. Baranov and A. Vasin, Scientific-Research Institute of
Thermal Processes, Moscow, Russia; J. Wetch and S. Wong, International Scientific
Products, San Jose, CA

IEPC-93-226
Theoretical and Experimental Analysis of Stationary Plasma Thruster Operation................2112
D. Valentian and J. Bugeat, SEP Aerodrome de Melun Villaroche, Moissy Cramayel,
France; R. Tchuyan, S. Khartov, L. Latsyhev, and V. Sierovaiisky, Moscow Aviation
Institute, Moscow, Russia; G. Cirri, Proel, Florence, Italy

IEPC-93-228
Anode Layer Thrusters: State-of-the-Art and Perspectives... 2120
E. Lyapin, V. Garkusha, and A. Semenkin and S. Tverdokhlebov, Central Research
Institute of Machine Building, Kaliningrad (Moscow Region), Moscow

IEPC-93-230
Two-Dimensional Numerical Model of Plasma Flow in a Hall Thruster................................2125
K. Komurasaki, Nagoya University, Nagoya, Japan; Y. Arakawa, University of Tokyo,
Tokyo, Japan

IEPC-93-231
Investigation of Erosion in Anode Layer Thrusters and Elaboration High Life Design............2134
Scheme
A. Semenkin, Central Research Institute of Machine Building, Kaliningrad (Moscow
Region), Moscow

IEPC-93-232
Study of Double-Stage Anode Layer Thruster Using Inert Gases.....................................2140
S. Tverdokhlebov, Central Research Institute of Machine Building, Kaliningrad
(Moscow Region), Moscow

IEPC-93-233
On Use of Alkali Metals as SPT Propellants..2146
V. Petrosov, V. Baranov, A. Vasin and Yu. Nazarenko, Scientific-Research Institute of
Thermal Processes, Moscow, Russia

IEPC-93-234
Measurements of the Electromagnetic Emissions from the T5 Ion Thruster.........................2150
S. Chanda and F. Mawdsley, ERA, Ltd., UK; R. Brown, Matra Marconi Space, Ltd.,
UK; S. Watson, Culham Laboratory, UK; A. Malik, Imperial College, London, UK;
D. Fearn, DRA, Farnborough, UK

IEPC-93-235
Beam Characteristics Evaluation of ETS-VI Xenon Ion Thruster....................................2166
H. Takegahara, Y. Kasai, Tokyo Metropolitan Institute of Technology, Tokyo, Japan;
Y. Gotoh, Mitsubishi Electric Company, Japan; K. Miyazaki, Y. Hayakawa, and S.
Kitamura, National Aerospace Laboratory, Japan; H. Hagano and K. Nakamaru,
NASDA, Japan

IEPC-93-236
Electric Probe Measurements in the Plume of the UK-10 Ion Thruster................................2175
P. deBoer, The Aerospace Corporation, Los Angeles, CA
IEPC-93-237
Microwave Diagnostics for Ion Engine Plumes... 2185
S. Janson, The Aerospace Corporation, Los Angeles, CA.

IEPC-93-239
The Effect of Propellant Selection on Mission Cost for the UK-25 Inert Gas Ion Thruster.......2190
C. Edwards and S. Gabriel, University of Southampton, Southampton, UK

IEPC-93-242
Plasma Particle Simulation in Cusped Ion Thrusters..2198
M. Hirakawa and Y. Arakawa, University of Tokyo, Tokyo, Japan

IEPC-93-243
Plasma Properties and Ignition Characteristics of RF Ion Source.......................................2205
H. Takegahara, T. Ohyama, K. Iwakura and T. Iwata, Tokyo Metropolitan Institute of Technology, Tokyo, Japan

IEPC-93-244
High Velocity Ion Source for Space Experiments..2211
V. Grigoryan, S. Kalitin, V. Obukhov, and M. Shalamov, Moscow Aviation Institute, Moscow, Russia

IEPC-93-246
Plasma Contactor Development for Space Station.. 2216
M. J. Patterson, J. A. Hamley, and C. Sarmiento, NASA Lewis, Cleveland, OH; D. Manzella, T. Sarver-Verhey and G. Souls, Sverdrup Technology, Brookpark, OH; A. Nelson, Purdue University, West Lafayette, IN

IEPC-93-247
Main Features of Physical Processes in Stationary Plasma Thrusters................................2245
A. Bugrova, A. Desiatskov, V. Kharchevnikov and A. Morozov, Moscow Institute of Radiotechnic, Electronics, and Automatics, Moscow, Russia

IEPC-93-249
Numerical Simulation of Hydrogen Arcjet Performance... 2252
G. Butler, A. Kull, and D. King, Rocket Research Company, Redmond, WA

IEPC-93-250
Power Console Development for NASA's Electric Propulsion Outreach Program..................2264
L. Pinero, M. Patterson, and V. Satterwhite, NASA Lewis, Cleveland, OH

IEPC-93-251
Operation of a Brassboard PCU With a low Power Arcjet..2284
R. Stefano and W. Deininger, BPD Difesa e Spazio, Colleferro, Italy; G. Parisi and Detoma, FIAT CIEI - SEPA, Torino, Italy

AUTHOR INDEX ... 2302

SUBJECT INDEX .. 2314

APPENDIX A - TECHNICAL SESSION PROGRAM ... 2320

APPENDIX B - MAILING ADDRESSES ... 2336