A REVIEW OF LOW ENERGY SPUTTERING THEORY AND EXPERIMENTS

Olivier B. DUCHEMIN
California Institute of Technology, Pasadena, CA 91125
John R. BROPHY and Charles E. GARNER
Jet Propulsion Laboratory, Pasadena, CA 91109
Pradosh K. RAY and V. SHUThANANDAN
Tuskegee University, Tuskegee, AL 36088
Maris A. MANTENIEKS
Lewis Research Center, Cleveland, OH 44135

Abstract
Sputtering mechanisms relevant to the erosion processes of electron bombardment xenon ion engines are described. Practical semi-empirical formulations applicable for slow, heavy ions are reviewed, along with the existing data for the sputtering of molybdenum by very low-energy xenon ions. No experimental data are available under 100 eV. Finally, seven different types of experimental techniques for measuring low-energy sputtering are reviewed.

1. Introduction
On-going efforts to assess xenon ion engine service life are hindered by the lack of qualitative and quantitative knowledge of the physical phenomena governing ion engine failure modes. Brophy et al. identified seven distinct failure modes for the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness) engine.

Two of these failure modes involve direct impact of unfocused primary xenon ions on the molybdenum screen grid webbing. One mode corresponds to structural failure of the screen grid, while the other is caused by structural failure of the accelerator grid due to direct ion impingement from beamlets defocused by flakes of sputtered material on the screen grid. The screen grid itself is believed to be the primary source of sputtered material. Another of these failure modes results from cathode orifice plate erosion, due to sputtering by ions with kinetic energies having a DC component between 12 and 20 eV for NSTAR.

In the two cases involving screen grid erosion, the kinetic energy of the incident ions corresponds to the engine discharge voltage. Despite successive reductions of discharge voltage values over the past years to the present value of less than 25 V for NSTAR in an effort to reduce the sputter erosion rates, the impingement of these low-energy ions is still believed to potentially lead to structural failure of the screen grid or the production of sputtered films which in turn can form metallic flakes that migrate in the chamber and can interfere with the optics. This erosion process, in the presence of a significant amount of double ions, can compete with the higher-energy sputtering erosion of the accelerator grid by charge-exchange ions because of a much higher incident ion current density.

However, the extremely long duration of life demonstration tests (8000-12000 hr.) and their cost make it impractical to rely on testing alone to predict ion engine service life. In addition, the level of confidence one has in the interpretation of tests involving different engine designs or different operating modes is dependent upon the understanding of the physical processes involved. For instance, knowledge of the low-energy sputtering yield for the incident ions on the screen grid material is necessary in order to analyze and predict the occurrence of screen grid failure or flake formation.

A great amount of research over the last five decades has been motivated by interest in subjects such as surface cleaning, sputter deposition of thin films or etching by sputtering, and has been carried out on high-energy (greater than a few keV) sputtering yields. In particular, the sputtering mechanism for light ions received attention from attempts at understanding the erosion of planetary surfaces by the solar wind or investigations of the magnetic confinement of hydrogen plasmas for fusion reactors. However, little is known about very low-energy sputtering by heavy ions. This lack of data results in the use of extrapolations from high-energy measurements or semi-empirical formulae that are inherently uncertain to generate estimates for the wear-out rate.

* Graduate Student, Aeronautical Engineering
† Group Supervisor, Advanced Propulsion Technology Group
‡ Senior Engineer, Advanced Propulsion Technology Group
§ Professor, Mechanical Engineering
¶ Research Assistant Professor, Mechanical Engineering
Aerospace Engineer

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
In this paper we present an overview of the physical description of low-energy sputtering and measurement techniques or results. We also describe the different methods available for generating approximate values.

2. Low Energy Sputtering: A Description

The interaction between an incident particle and a solid target can give rise to many different phenomena: the particle can be backscattered, come to thermal equilibrium with the surface before being subsequently evaporated, excite electronic transitions and provoke the ejection of gamma (secondary) electrons or the modification of chemical bonds, dislodge atoms from the solid surface or even, at very high particle energies, cause radiation damage. The kinetic energy of the incoming particle determines, for the most part, which phenomenon actually occurs or dominates.

Physical sputtering is an atomic scale process that can occur if the incident particle (ion) can transfer sufficient energy to a surface or bulk target atom to overcome its bulk displacement energy and/or its surface binding energy. The erosion due to physical sputtering is described by the sputtering yield, Y, a statistical variable defined as the mean number of atoms removed from a solid target per incident ion. Sputtering by elastic collisions can have three regimes: the single-knockon, the linear cascade or the spike regime.

The processes involving a linear collision cascade or the spike regime become less important at energies near threshold. Behrisch summarized the possible sputtering mechanisms for low-energy light ions as reproduced in Fig. 1. These mechanisms are in fact still possible for heavy ions on light targets, as is most often the case with xenon, with the provision that the processes involving an outgoing ion (S_0) are less probable than with light ions since backscattering of a heavy ion (impossible for a head-on collision) will demand more collisions. In the case of normal ion incidence, a minimum of two collisions is necessary for producing a sputtered atom. In turn, atoms sputtered as a result of very few low-energy collisions are more likely to be sputtered at grazing incidences.

A pure hard-sphere, classical two-particle elastic scattering model is often used to describe physical sputtering, but the energy transfer between ions and atoms or between two cascade atoms is complicated by the complex electronic screening of the two nuclei. In the limit of high-energy particles, the collision kinematics are the same as in Rutherford scattering of two point charges, but for low-energy collisions a detailed description would require taking into account the physics of quantized screened Coulomb collisions and the absorption of energy by Pauli promotion of the electrons. Finally, the nuclear stopping power, i.e., the probable energy loss of the ion per unit distance traveled through the target, depends on which classical atomic model is chosen. Unfortunately, these models give significantly different results at low energy, as shown on the plot reproduced for convenience in Fig. 2.

![Fig. 2: Nuclear stopping power using the universal screening potential (solid line) or the four classical atomic models.](image)

It should also be noted that at energies near threshold a new difficulty arises, due to the fact that the Rutherford scattering cross section increases with decreasing particle velocity. This in turn implies that the collisions can no longer be treated as independent binary collisions, but rather involve several neighboring atoms.

Threshold Energy And Atomic Mass Dependence

Since physical sputtering is a collision process, it is intuitive that it should be a function of the atomic mass of the collision partners. It can easily be shown (see e.g. Ref. 10) that the fraction of energy transferred to a target particle of mass m_2 by a projectile of mass m_1 in a head-on (zero scattering angle) collision is:

$$\gamma \equiv \frac{E_2}{E_0} = \frac{4m_1m_2}{(m_1 + m_2)^3}$$

where γ is the energy transfer factor, E_2 is the kinetic energy transferred to the target particle and E_0 is the initial kinetic energy of the projectile.

Bradley concluded from this and early experiments in 1954 that the threshold (or minimum)
energy for sputtering to occur could be predicted by:

$$\frac{U_s}{E_m} = \frac{4m_1m_2}{(m_1 + m_2)^2} = \gamma$$ \(2\)

where U_s is the atomic heat of sublimation and E_m the threshold energy. This was later confirmed by Wehner21 who, in 1958, suggested that in a first approximation E_m was proportional to U_s/γ, with the proportionality factor being between 8 and 20. He also noted that sputtering presented quite the same periodicity with atomic number as the heat of sublimation.

However a somewhat counterintuitive result was published in 1962 by Stuart and Wehner,14 who first realized that in fact the mass ratio between ion and target atom played hardly any role in the thresholds. This observation was then confirmed by Wehner and Anderson17 who suggested as an explanation that at low energy the collisions could not be treated as independent successive two-particle collisions and recommended that "modified masses" be introduced. The fractional energy transfer γ was therefore dropped from some models used to predict the sputtering threshold, but the value of E_m was still controversial and subsequently approximated as $4U_s$ for heavy ions6 or both for heavy and light ions,5 U_s/γ for light ions14,15 or for $m_1 < m_2$, $U_s(1-\gamma)$ for $m_1/m_2 \leq 0.3$,17 $8U_s(m_1/m_2)^{0.5}$ for $m_1/m_2 > 0.3$,17

$$E_m = 1.5 \frac{U_s}{\gamma} \left[1 + 1.38 \left(\frac{m_1}{m_2} \right) \right]^{1/2}$$ \(3\)

where $h=0.834$ for $m_2 > m_1$, and $h=0.18$ for $m_2 < m_1$,18 or finally

$$E_m = U_s \left[1.9 + 3.8 \left(\frac{m_2}{m_1} \right) + 0.134 \left(\frac{m_2}{m_1} \right)^{1.28} \right]$$ \(4\)

where Eq. (4) is from Ref. 19. For completeness, it should be added that Weissman and Sigmund21 suggested $E_m = U_s$, and Olson et al.9 pointed out that the very poorly defined sputtering threshold (identified as the surface binding energy) may have an effective value much less than the heat of sublimation. Which approximation is to be used, except for Eq. (4), depends on which sputtering mechanism dominates (see Fig. 1). As pointed out by Weissman and Behrisch,22 sputtering by light ions is primarily driven by backscattering of the ions from the interior of the target (reflective collision process), whereas for heavy ions collision cascades generated by direct impingement of the incoming ions dominate the sputtering mechanism (displacement process). This distinction is extremely important for the threshold energy, as well as for the angular dependence of the low-energy sputtering yield.21

Incidence Angle Dependence

Ref. 21 provides an excellent background as well as an extensive list of references on the subject of angular dependence of sputtering yields that will not be duplicated here. Yamamura et al.21 reported that numerous investigations showed the angular dependence of the sputtering yield to behave like $\cos^4 \theta$ for not-too-oblique incidence, where θ is the angle of incidence measured from the surface normal, while Sigmund22 obtained from theoretical studies a dependence in $\cos^4 \theta$, where $1 < \theta < 2$. Yamamura et al.18 pointed out that the threshold energy for heavy-ion sputtering was mainly determined by the anisotropic velocity distribution of the recoil atoms, and Yamamura et al.18 further indicated that this was also the reason why the threshold energy had a minimum near 60°, unlike in the case of light-ion sputtering.

An empirical formula for the angular dependence of sputtering can be given as:21

$$\frac{Y(\theta)}{Y(0)} = \cos^{-f} \theta \exp \left[-\sum (\cos^{-1} \theta - 1) \right]$$ \(5\)

where f and Σ are energy-dependent fit parameters as given in Ref. 21, with values 19.96 and 13.55 respectively for 100-eV xenon ions on molybdenum. $Y(0)$ is the sputtering yield at normal incidence. The exponent f carries the threshold effect and is a function of the ratio E/E_m. The angular dependence of E_m itself is driven by the threshold energy for the sputtering process S_j in Fig. 1 and the threshold energy corresponding to surface channeling,21 i.e.

$$E_m(\theta) \equiv E_m(0) \cos^2 \theta$$ \(6a\)

for not-too-oblique incidence angles, and

$$E_m(\theta) \equiv \frac{0.3 \frac{m_1/m_2}{E_{TF} \left(\frac{a}{R_o} \right)} E_m(0) \cos^2 \theta}{\cos^2 \theta}$$ \(6b\)

for grazing angles. $E_m(0)$ is the threshold energy for normally-incident ions. a is the Thomas-Fermi screening radius and is a function of the atomic numbers Z_1 and Z_2 of the projectile and the target respectively and is given by

$$a = 0.4685 \left(\frac{Z_1^{0.5} + Z_2^{0.5}}{N^{0.5}} \right)^{1/2}.$$ \(7\)

R_o is the average lattice constant of the target, given by $R_o = N^{1/3}$ where N is the number density of the target atom, and E_{TF} is the Thomas-Fermi energy unit given by

$$E_{TF} = \frac{m_1 + m_2}{m_1} \frac{Z_1 Z_2 e^2}{a}$$ \(8\)

from LSS theory (see for example Refs. 6, 10 or 23). e is the proton charge. Eq. (6a) corresponds to the sputtering mechanism S_1 (see Fig. 1), while Eq. (6b) describes the onset of surface channeling and dominates for large values of θ. Fig. 3 shows the threshold energy as a function of incidence angle for these two mechanisms for xenon ions on molybdenum. The angular dependence of the sputtering yield for 100-eV xenon ions on molybdenum using Eq. (5) is also shown.
3. Predictions for Low-Energy Sputtering

Empirical Formulae

In order to predict the ion erosion rate on the NSTAR engine, Rawlinz4 used a quadratic approximation to extrapolate the energy dependence of the sputtering yield in the region near threshold. Other authors have developed or used empirical or semi-empirical models.

Sigmund22 proposed a systematic study of the sputtering of a random monoatomic target in the linear collision cascade regime based on transport theory. The Sigmund equation,

\[Y(E) = \frac{0.042 \alpha(M_2/M_1)S_n(E)}{U_s} \]

where \(\alpha \) is a fit parameter, \(S_n(E) \) is the measured sublimation energy, \(U_s \) is the elastic (nuclear) stopping cross section, and \(\alpha(M_2/M_1) \) is Matsunami et al.'s adaptation of this formula by taking into account the effect of the threshold energy to write the first Matsunami formula:

\[Y(E) = \frac{0.042 \alpha S_n(E)}{U_s} \left(1 - \left(\frac{E_m}{E} \right)^{2\gamma} \right)^{1/\gamma} \]

where \(\gamma = 5 \).

The third Matsunami formula or Eq. (13), along with Eq. (5), are helpful analytical expressions, and were used by Bond and Latham20 in the plasma simulation code SAPPHIRE to calculate grid erosion rates due to charge-exchange ions in the UK-10 ion thruster. Sigmund22 however noted in his theory that the surface collisions that dominate sputtering near threshold cannot be described by transport theory, and that the concept of binary collisions that he assumed becomes questionable at low energy.
Extreme care should therefore be used with Eqs. (9)-(12) at energies near threshold.

4. A Review of Experimental Methods

Driving Requirements

Measuring sputtering yields for materials of interest in ion thruster technology with slow incident ions raises very serious experimental difficulties, listed below:

- The vanishingly small amounts of sputtered material to be measured in a practical exposure time mandates the use of an extremely sensitive method and requires the highest ion current density possible.
- The ion beam should have as low an energy spread and as low a divergence angle as possible, to insure that the ion energy and incidence angle are well known and controlled. This implies in particular that the multiply-charged ion current be as small as possible, which requires a low discharge voltage. Another concern regarding the beam could be the presence of fast neutral due to charge exchange collisions in the ion source. The choice for the method of generating the ion beam usually results from a trade off between the relatively high current densities achievable with a plasma discharge (typically up to 15 mA/cm²) and the better-defined beam that can be obtained with an ion gun, in terms of energy, incidence angle and impurities. Ion guns however are limited in beam current density due to the space charge limitation, proportional to \(V^{2/3} \) where \(V \) is the accelerating voltage.
- A low background gas pressure needs to be achieved in the facility in order to insure that the mean free path of the ions is larger than the source-to-target distance, so that uniformity of the beam in energy and incidence angle is preserved. A low base pressure is also required to prevent the formation of a protective chemisorbed impurity layer at the target surface. This problem is also related to the ion beam current density and is described in more detail below.

Effects of Background Gases on Sputter Erosion in Ion Thrusters

Lifetests of ion thrusters to measure the screen grid sputter-erosion may be seriously compromised by the effects of background gases. Erosion by unfocused ions in the discharge chamber is present in the presence of background gases. The sputtering rate of the screen grid has been found to be reduced from that of a dynamically clean surface by factors up to eight. If vacuum conditions are not adequate in the test facility, the various species of background gases will be chemisorbed on the screen grid surface and will act as a buffer to the impinging ions, thus reducing the net erosion rate of the screen grid. This effect is shown in Fig. 5. The plasma in the discharge chamber excites the background gas molecules, which dissociate upon colliding with the target surface. This increases the reactivity of the background gases. When the pressure is sufficiently low, the sputter-erosion rate is equal to that of a dynamically clean surface. As the background pressure is increased, chemisorption on the screen grid surface will begin to take place. If the background pressure reaches still higher levels, the sputter-erosion will level off as compound or compounds of the target and the background gases are formed. Under these conditions, the sputtering of the compound or compounds will take place instead of a clean surface. The pressure at which chemisorption will begin to affect the measured sputtering rate depends on the thruster operating condition, the discharge voltage which determines the ion energy, and the current density of the singly and doubly charged ions.

To determine the proper vacuum conditions at which the effect of the background gases becomes negligible for the operating conditions of the thruster is a not an easy task. It has often been stated that a sufficient condition for a dynamically clean surface is that the flux of the impinging ions be larger than the flux of the impinging gas to the target area. This, however, is not a sufficient condition. The sputtering rate of the absorbed species has to be taken into account. The condition to ensure a dynamically clean surface is:

\[
\frac{Y_{i,s} I}{\beta_{i,s} f} \geq 10
\]

where:
- \(Y_{i,s} \) = sputtering yield of species \(i \) absorbed on target \(s \)
- \(I \) = ion flux impinging on target \(s \)
- \(f \) = background gas flux impinging on target \(s \)
- \(\beta_{i,s} \) = sticking probability of background gas species \(i \) on a clean target \(s \)

The parameters most difficult to determine are \(Y_{i,s} \) and \(\beta_{i,s} \). A theory for the sputtering of chemisorbed gases has been developed and the formulations applied to thruster lifetests have met with some degree of success. It has been demonstrated that most background gases found in diffusion pump vacuum facilities such as \(\text{N}_2, \text{H}_2\text{O}, \text{O}_2 \) and...
C$_2$N$_2$, will react with the target and be chemisorbed on the target.42

To calculate the ratio defined by Eq. (15), it is assumed that the bulk of the chemisorbed gas on the screen grid target is nitrogen. In a common diffusion pump vacuum facility in which an air leak or liquid nitrogen trap leak is the most probable source of background gas, nitrogen is the largest constituent of the background gases. The sputtering yields of chemisorbed nitrogen were calculated using Winter’s formulation.41 For NSTAR conditions, the sputter yield of nitrogen for singly charged xenon ions at 25 V is 0.02 atom/ion and for doubly charged xenon ions, the yield is 0.08 atom/ion. The sticking coefficient was assumed to be equal to 1.0 because of the high reactivity of the species due to the presence of the discharge plasma. The ratio defined by Eq. (15) is estimated to be 5 for the given test conditions, which is somewhat lower than the recommended value of 10.

Therefore, some reduction of the sputtering rate of the screen grid is to be expected in a lifetest due to background gases, if the operating pressure of the vacuum facility is $\sim 2.0 \times 10^{-7}$ Torr. The magnitude of the reduction is not well defined.

Measurement Techniques and Results

A brief review of experimental techniques follows, and is summarized in Table 1. Seven families of methods for measuring sputtering yields have been identified. Other early methods from the 1920’s through 1950’s, some of which were reasonably sensitive, are not listed here but are described in Ref. 14.

The first and most extensively used method involves measuring the weight loss of the eroded sample.12,16,33,35,43,46 While this method allows for absolute, direct measurements on all materials and is relatively simple, its sensitivity, limited to about 10^{-7} atom/ion with

<table>
<thead>
<tr>
<th>Method</th>
<th>Comments</th>
<th>Ref.</th>
<th>Ion/Target Combination</th>
<th>Ion Beam Generation</th>
<th>Ion Energy Range (eV)</th>
<th>Beam Current Density (mA/cm2)</th>
<th>Background Pressure (Torr)</th>
<th>Lowest Sputtering Yield Measured (atom/ion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Loss</td>
<td>-Direct, versatile, absolute values</td>
<td>33</td>
<td>Hg$^+$ on 26 metals</td>
<td>Plasma discharge</td>
<td>20-400</td>
<td>5 (up to 15)</td>
<td>10^-6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-Low sensitivity</td>
<td>12</td>
<td>Hg$^+$ on metals and semiconductors</td>
<td>Plasma discharge</td>
<td>50-400</td>
<td>5 (up to 15)</td>
<td>10^-6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
<td>Ar$^+$ and Ne$^+$ on metals and semiconductors</td>
<td>Plasma discharge</td>
<td>50-600</td>
<td>2-15</td>
<td>7x10^-7</td>
<td>4x10^-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>Ni$^+$, Ar$^+$, Ar$^{3+}$, Xe$^+$, and Xe$^{2+}$ on Cu, Ni, Fe, and Mo</td>
<td>Plasma discharge</td>
<td>60-1000</td>
<td>2-15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>He+, Kr+, and Xe+ on various metals</td>
<td>Plasma discharge</td>
<td>100-500</td>
<td>2-15</td>
<td>10^-6-10^-7</td>
<td>1x10^-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>H$^+$ on 304 SS, pyro graphite, C fibres, glassy C and SiC</td>
<td>Ion source</td>
<td>500-7,500</td>
<td>Up to 5</td>
<td>-</td>
<td>3x10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>H$^+$, D$^+$, He$^+$, He$^{3+}$ on Mo and Au</td>
<td>Ion Source</td>
<td>150-20,000</td>
<td>0.5 to 1</td>
<td>-</td>
<td>1x10^-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43</td>
<td>Sputtering for Ni</td>
<td>Plasma discharge</td>
<td>25-5,000</td>
<td>0.1</td>
<td>-</td>
<td>5x10^-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44</td>
<td>H$^+$ and He$^+$ on Ni and W</td>
<td>Ion source</td>
<td>1,000-4,000</td>
<td>0.5 to 5</td>
<td>-</td>
<td>2.1x10^-6</td>
</tr>
<tr>
<td>Profiometry</td>
<td>-Direct, versatile, absolute values</td>
<td>49</td>
<td>Ar$^+$ on Si, Ag, Cu, Ni, Ti and Al</td>
<td>Ion Source</td>
<td>10,000</td>
<td>0.1</td>
<td>-</td>
<td>-10^-7 (inferred)</td>
</tr>
<tr>
<td></td>
<td>-Low sensitivity</td>
<td>31</td>
<td>Xe$^+$ on CVD diamond, C-C and Mo</td>
<td>Ion Source</td>
<td>150-750</td>
<td>0.3-2.6</td>
<td>-10^-7</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>Hg$^+$ on metals</td>
<td>Compressed plasma discharge</td>
<td>20-200</td>
<td>Up to 500</td>
<td>-</td>
<td>3x10^-4</td>
</tr>
<tr>
<td>Surface Ionization</td>
<td>-Sensitive, direct, limited to alkali metals, relative values</td>
<td>13</td>
<td>He$^+$, Ne$^+$, Ar$^+$ and Xe$^+$ on Na and K</td>
<td>Ion gun</td>
<td>0-1,800</td>
<td>-</td>
<td>5x10^-8</td>
<td>3x10^-3</td>
</tr>
<tr>
<td>Radioactive Tracer</td>
<td>-Very sensitive, direct, few suitable isotopes, relative values, complex</td>
<td>50</td>
<td>Hg$^+$ and Ar$^+$ on Co</td>
<td>Plasma discharge</td>
<td>10-100</td>
<td>-</td>
<td>-10^-6</td>
<td>3x10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51</td>
<td>Ar$^+$ and Xe$^+$ on Co, Cd and Cr</td>
<td>Ion gun</td>
<td>10-500</td>
<td>1 to 0.1</td>
<td>2x10^-7</td>
<td>7x10^-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>Ar$^+$ and Xe$^+$ on Cr</td>
<td>Ion gun</td>
<td>50-500</td>
<td>0.01-0.1</td>
<td>2x10^-7</td>
<td>5x10^-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53</td>
<td>Ar$^+$ and Xe$^+$ on Co and Cr</td>
<td>Ion gun</td>
<td>10-50</td>
<td>0.002-0.002</td>
<td>2x10^-7</td>
<td>4x10^-5</td>
</tr>
<tr>
<td>QCM</td>
<td>-Very sensitive, absolute, simple, direct, in situ</td>
<td>55</td>
<td>Ar$^+$ on Au</td>
<td>Ion source</td>
<td>0-100</td>
<td>-0.01</td>
<td>1x10^-7</td>
<td>3x10^-7</td>
</tr>
<tr>
<td></td>
<td>-Requires sample material to be coated as thin film on crystal</td>
<td>36</td>
<td>Sputtering for Au, Cu, Ag, Cr and Al</td>
<td>Ion gun</td>
<td>10-300</td>
<td>2x10^-7</td>
<td>-10^-7 (1.1 in less than 10 sec.)</td>
<td></td>
</tr>
<tr>
<td>Spectroscopic Methods</td>
<td>-Very sensitive, versatile, in situ</td>
<td>57</td>
<td>Hg$^+$ and Ar$^+$ on Cr</td>
<td>Plasma discharge</td>
<td>25-300</td>
<td>-</td>
<td>-10^-6</td>
<td>3x10^-7</td>
</tr>
<tr>
<td></td>
<td>-Often indirect and giving relative values</td>
<td>14</td>
<td>Ne$^+$, Ar$^+$, Kr$^+$, Xe$^+$ and Hg$^+$ on 23 metals</td>
<td>Compressed plasma discharge</td>
<td>40</td>
<td>(up to 100)</td>
<td>1x10^-6</td>
<td>1.5x10^-6 (measured with bakeout)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59</td>
<td>Ar$^+$ on Ag and Nb</td>
<td>Ion source</td>
<td>500-1,500</td>
<td>0.08 (estimate)</td>
<td>1.5x10^-6</td>
<td>0.2 measured 10^-7 possible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>Xe$^+$ on Mo</td>
<td>Ion gun</td>
<td>150-400</td>
<td>0.03</td>
<td>2x10^-7</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 1: A Review of Experimental Techniques for Measuring Low Sputtering Yields.
very high beam current densities, makes it inappropriate for sputtering at energies near threshold.

The same remarks apply to profilometry.31,47,48 This method involves measuring the depth of the sputtered surface with a micro-stylus, with reference to a masked area of the target. One difficulty with this method is that its precision depends on the eroded depth profile roughness.

Askarov and Sena49 used the change in the optical transmission of the plasma radiation to a photoresistor through the sputtered film deposited on a glass wall. Although this method has the advantage of being \textit{in situ}, it is indirect, gives a relative value for the sputtering yield and is still of too low a sensitivity for very slow ions.

Another somewhat original and relatively sensitive method was described by Bradley,13 who used the property that alkali metal atoms lose their valence electron when striking a hot metal surface. In these experiments, a negatively-biased electrode collected the ion current corresponding to the sputtered alkali atoms ionized upon impact on a hot platinum surface. This method is unfortunately confined to alkali metals and only gives relative sputtering coefficients.

Methods using radioactive tracers were proved by Morgulis and Tishchenko50 and Handoo and Ray51-53 to provide a great benefit in sensitivity, enabling measurements in the near threshold region. These methods however present the inconvenience of requiring a suitable isotope for the material to be sputtered (in terms of half life and energy of the gamma-ray emissions) or the activation of a surface layer of the sample in a specialized facility.54

Another very sensitive method, using Quartz Crystal Microbalance (QCM) techniques, was early proposed by McKeown.55 With modern-day frequency-measurement technology, using a QCM could theoretically enable direct, \textit{in situ}, measurements of sputter yields as low as \(10^9\) atom/ion even at low current density. A difficulty associated with this method is that it requires the sample material to be coated as a thin film (a few \(\mu\text{m}\) thick) on the quartz crystal.

The last family of measurement techniques encompasses spectroscopic methods such as optical spectroscopy,14-16,49 Auger Electron Spectroscopy (AES),16 Rutherford Backscattering Spectroscopy (RBS),32 or Secondary Neutral Mass Spectrometry (SNMS).32 Optical spectroscopy and SNMS are indirect methods and can only give relative sputtering yields. RBS was used by Bhattacharjee \textit{et al.}32 to calibrate measurements obtained with SNMS, which are more sensitive.

5. Current Work and Conclusion

Upon reviewing the literature available on low energy sputtering yields, the authors have concluded that:

(a) There is currently no satisfactory data available for the sputtering yield of molybdenum by xenon ions under 100 eV to adequately assess ion engine service life by analysis.

(b) Extrapolations and semi-empirical formulae are available to obtain rough estimates with an uncertainty exceeding 20%.28 They are based on fit parameters obtained with existing, higher-energy data.

(c) Empirical formulations or computer simulations are based on physical theories that break down at low energy because the interatomic potentials and the assumptions on the nature of the collisions no longer represent an accurate description of the reality.

(d) The measurement of sputtering yields with energies near threshold poses serious difficulties, essentially due to contamination issues and sensitivity requirements.

However, modern instruments, measurement techniques and vacuum facilities might enable some significant progress in the near future. Experimental work is ongoing at Tuskegee University using RBS and mass spectroscopic methods, and at JPL with piezoelectric QCM's.

Acknowledgments

This work was supported by the National Aeronautics and Space Administration through a contract with the California Institute of Technology.

The authors wish to express their thanks to Dr. J. Polk (JPL) and E. Boer (Caltech) for critical reading of the manuscript.

References