Development of an RF-Ion Thruster for Commercial Application

Rainer Killinger, Helmut Bassner, Space Infrastructure
Johann Müller, Dornier Satellite Systems

DaimlerChrysler Aerospace AG
Postfach 80 11 69
D-816633 München, Germany
Tel: +49 89 607 23682

ABSTRACT

Based on the Radiofrequency Ion Thruster (RIT10_ART) built and successfully qualified for ARTEMIS the DaimlerChrysler Aerospace AG (DASA) started to develop two improved ion thrusters for low to medium thrust (RIT10_EVOlution) and high thrust (RIT_XT) applications. This paper, after an initial description of the RIT operational principle will provide the results of the already completed RIT10_EVO development. During the development of the RIT_XT special emphasis was put on easy manufacturing and thus low cost. The first results of the RIT_XT are outlined in chapter 3.

1. THE RIT TECHNOLOGY

1.1 RIT Operating Principle

The RF-Ion Thruster technology ionizes Xenon atoms by collision with electrons which are accelerated by an RF-field. The RF-field is coupled into the inner of a discharge vessel by an RF-coil.

The ions are accelerated in an extraction grid system by an electrostatic field. Electrons for neutralization of the extracted ion beam are produced by a hollow cathode neutralizer, which also generates the electrons for the ignition of the discharge in the thruster. During normal discharge operation an electron source is not necessary.

Fig. 1-1 shows a block diagram explaining the operating principle of a RIT thruster.

1.2 Comparison with other technologies

The RF-Ion Thruster (RIT) technology has some advantages compared to other thruster technologies like the Kaufmann-thruster or the Hall Effect Thruster (HET):

* The RIT does not need a continuous electron source for the discharge operation. Since the discharge is ignited, it is self-sustaining. Electrons for the ignition of the discharge will be delivered from the neutralizer.
* The thrust level is easy and fast to control by the adaptation of the RF-energy for ionization.
* RIT has a constant exhaust velocity and a negligible number of double charged ions, therefore no erosion of discharge vessel, gas inlet, and screen grid.

Fig. 1-1: Operating Principle of a Radiofrequency Ion Thruster

Copyright © by the Japan Society for Aeronautical and Space Sciences. All rights reserved.
2. DEVELOPMENT OF THE RIT10_EVO(tion)

Due to the market requirement for higher thrust levels, Dasa decided to improve the RIT technology with respect to ion beam density in the grid system to allow for the generation of higher thrust at the same beam diameter and to improve the ionization efficiency in order to decrease the power to thrust ratio. As a first step of this "Evolution Program" a high performance thruster of the ARTEMIS class, i.e. 10 cm discharge chamber diameter, called RIT10_EVO, was developed, manufactured, and tested in 1997/98.

In order to minimize cost and time for development and the manufacturing to flight standard, ARTEMIS parts were used wherever feasible. As a result the new thruster was ready for test within 4 months after start of the development.

The testing was performed in January/February 1998 at the ESTEC test facility in Noordwijk, The Netherlands. The newly developed grid resulted in an increased performance and a reduced grid erosion.

The following achievements were made:

- Thrust regulation bandwidth
 Demonstrated: 1 to 41 mN

- Increased specific impulse Isp (thruster):
 (at acceleration voltage = 1500V)

 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{Thrust} & \text{was} & \text{achieved} \\
 \hline
 15 \text{ mN} & 3400 \text{ s} & > 3700 \text{ s} \\
 35 \text{ mN} & \text{n/a} & 3400 - 3700 \\
 \hline
 \end{array}
 \]

- Reduced acceleration grid loss current (Iac) from 1.5% to approx. 0.7% at \(\leq 30 \text{ mN} \), at a vacuum chamber pressure of \(5 \times 10^{-5} \), and therefore increased lifetime capability.

- Reduced specific power:

 \[
 \begin{array}{|c|c|c|}
 \hline
 & P_{\text{thruster/F}} & P_{\text{mainpix/F}} \\
 \hline
 \text{ARTEMIS} & 35 \text{ W/mN} & 37.5 \text{ W/mN} \\
 \text{RIT10_EVO} & 25-27 \text{ W/mN} & 29-31 \text{ W/mN} \\
 \hline
 \end{array}
 \]

The RIT10_EVO thruster, shown in figure 2-1, is optimized for N/S-station keeping of geosynchronous satellites, orbit maintenance of LEO constellation, and other low or medium thrust/power applications. Due to its capability to operate at various thrust levels (<1 mN up to 40 mN), at an
extremely short time scale, it is the first choice for missions requiring drag compensation like, ESA's Gravity and Ocean Circulation Explorer (GOCE). This unique behavior was tested on a RIT engineering model. Figure 2-3 shows the RIT performance at fast throttling application comparison. The figure shows a comparison between commanded and measured thrust. The thruster was operated at a constant mass flow of 0.31 ms/s. During this test the operation bandwidth (ft) of the thrust level was limited due to the use of the ARTEMIS electronics (ft ≈ 1 Hz), the bandwidth for the use on GOCE will be improved to ft >10 Hz.

Figure 2-4 shows the mass efficiencies of the thruster (measured) and the total efficiency - thruster and neutralizer - (calculated). For total flow rates above 8 sccm, the mass efficiency is slightly decreasing for increasing flow rates due to increasing neutral gas losses due to the increasing pressure in the thruster vessel.

Fig 2-5 RIT10 EVO Specific Impulse as a function of Flow Rate

At low flow rates < 5 sccm the constant neutralizer mass flow causes an increasing mass efficiency, as it has less influence on the flow rate at increasing thruster flow rates. This behavior directly has an effect on the specific impulse, as shown in Fig 2-5.

The specific power in Fig 2-6 is shown for an acceleration voltage of 1500V. At lower acceleration voltages the specific power and thus the main bus power are reduced, as shown in Fig 2-7

Fig 2-4 RIT10_EVO Mass Efficiency as a function of Flow Rate

Fig 2-6 RIT10 EVO Specific Power as a function of Thrust
One major improvement was the reduction of the accel drain current from ARTEMIS to the RIT10_EVO as shown in Fig 2-8.

Fig 2-8 Comparison to the Access Drain Current between the ARTEMIS thruster and the RIT10_EVO

Fig 2-9 Pressure dependence of the Accel Drain Current
These tests were performed at vacuum chamber pressures pressure of 5×10^{-5} mbar. From the results shown in Fig 2-9 it can be concluded that the accel. drain current in space will be about 70% of the values tested.

3. DEVELOPMENT OF THE RIT_XT HIGH POWER THRUSTER

In order to cover the high thrust requirements for orbit raising of LEO-constellations, transfer from GTO to GEO, and interplanetary missions for the beginning new millennium, Dasa currently is developing an 100-mN class thruster called RIT_XT. Design and specific performance of this thruster is based on the achievements of the RIT10_EVO. The performance requirements achieved on the EVO thruster, e.g. current density in the grid, were reduced for the large thruster in order to allow a design to cost. In addition this approach provides a growth potential for the thrust above the 100mN which is the current design goal for this thruster.

![RIT_XT in Test Chamber](image)

Fig. 3-1: RIT_XT in Test Chamber

A comparison of the evolution thruster family with EURECA and ARTEMIS is shown in table 4.1.

Together with the RIT_XT thruster an advanced Power Processing Unit - PPU is under development at Dasa.

The key technical data are listed below:

- Primary power demand 2,800 W
- Mechanical I/F 360 * 420 * 140 mm
- Dissipated power 252 W
- Max. heat flux 0.17 W/cm²
- Mass 12kg

The testing of the RIT_XT was started in February 1999. First results at low thrust levels up to 50 mN (Fig 3-3) show an excellent performance.

![RIT_XT First Parameter Test](image)

Fig 3-3 Thruster Power as a function of Flow Rate for different Thrust Levels

In addition the first results show a trend to excellent low specific power values for the RIT_XT thruster, as shown in Fig. 3-4.

![RIT_XT First Parameter Test](image)

Fig 3-4 Main Bus Power as a function of Flow Rate for different Thrust Levels

A combination of the figure 3-3 and 3-4 is shown in Fig.3-5.

Currently the test is interrupted awaiting the delivery of a power supply for higher thrust levels.
Table 4-1: Dasa Radio Frequency Thruster Performance Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EURECA</th>
<th>RIT10_ART</th>
<th>RIT10_EVO</th>
<th>RIT_XT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust level</td>
<td>10 mN</td>
<td>15 mN</td>
<td>1 to 35 mN</td>
<td>15 to 150 mN</td>
</tr>
<tr>
<td>Thruster Diameter</td>
<td>16 cm</td>
<td>16 cm</td>
<td>16 cm</td>
<td>28,9 cm</td>
</tr>
<tr>
<td>Discharge Chamber Ø</td>
<td>10 cm</td>
<td>10 cm</td>
<td>10 cm</td>
<td>22 cm</td>
</tr>
<tr>
<td>Beam Diameter</td>
<td>85 mm</td>
<td>87 mm</td>
<td>89 mm</td>
<td>208 mm</td>
</tr>
<tr>
<td>No. of Holes</td>
<td>253</td>
<td>499</td>
<td>1483</td>
<td>8160</td>
</tr>
<tr>
<td>Beam voltage</td>
<td>1500 V</td>
<td>1500 V</td>
<td>1300 V</td>
<td>1200 V</td>
</tr>
<tr>
<td>Main Bus Power</td>
<td>440 W</td>
<td>560 W</td>
<td>100 W to 1050 W</td>
<td>2600 W at 100 mN</td>
</tr>
<tr>
<td>Optimum Specific Impulse</td>
<td>3200 s</td>
<td>3350 s</td>
<td>3000-3200 s</td>
<td>3000-3300 s</td>
</tr>
<tr>
<td>Thruster Specific Power</td>
<td>41 W/mN</td>
<td>35 W/mN</td>
<td>25W/mN-27/mN</td>
<td>22W/mN-24W/mN</td>
</tr>
<tr>
<td>Specific Power Pmain_bus/F</td>
<td>44 W/mN</td>
<td>37,5 W/mN</td>
<td>29W/mN-31/mN</td>
<td>26W/mN-28W/mN</td>
</tr>
</tbody>
</table>

Fig 3-4 Thruster Power Input as a function of Flow Rate for different Thrust Levels

6. CONCLUSIONS

The RF-Ion Thruster technology has great advantages with respect to other gridded ion thrusters and to the Hall Effect Thruster (HET). For commercial applications on GEO communication satellites and LEO constellations the thruster technology has been improved in general. The specific power drawn form the main bus has been reduced to 26-28 W/mN at specific impulses in the range of 3000 to 3200s.

Dasa started a program to qualify such a thruster for 100mN thrust level which can be used for commercial applications in 2001. It will be designed for serial fabrication to allow the production of the thruster system at reasonable prices.

REFERENCES

AIAA 99-2271, Electric Propulsion System RITA of ARTEMIS; R. Killinger, H. Bassner, G. Kienlein