A grid lifetime model is presented for the lifetime estimation of a 3-grid ion engine system. The failure mechanism considered in the model is electron backstreaming due to charge exchange ion erosion, which is fatal to the operation of the ion engine. The process which will be ended with electron backstreaming is described as follows: 1) charge exchange ion erosion enlarges accel grid hole diameter, 2) the enlarged accel grid hole diameter decreases the negative potential between the screen and accel grids, and 3) the negative potential becomes too small to expel the neutralizing electrons away from the discharge chamber. The above process is modeled with the space-charge-limited current density law and a newly introduced parameter called extended effective acceleration length. The characteristic of the model is that lifetime strongly depends on beam current and accel grid voltage. An evaluation was made to validate the model using a computer program and showed that the model agreed quite well with simulations and gave good scaling for grid lifetime.

Introduction

Since ion engines provide high specific impulse and high thrust efficiency, and the scaling laws have been well established, the ion engine is being put to practical use in Japan, the U.S. and Europe.1-3 To compensate for low thrust acceleration and meet a variety of requirements for future space missions, the required lifetime of ion engine system is quite long, which ranges from several months to over several years. Therefore, the assessment and establishment of such long periods of operation of ion engine system is immediate problems to be worked on.

The ion engine system consists of many components with limited lifetime due to their inherent failure modes.4,5 One of the failure modes is known as a grid erosion caused by charge exchange ions. Unfortunately grid erosion cannot be stopped since the production of charge exchange ions constantly occurs during the operation of the ion engine. Thus, accurate evaluations of grid erosion are critical to the successful assessments of the lifetime of ion engine.

Since performing actual life-tests requires devastating time, numerical simulation is preferred in most of the parametric studies. Numerical simulation is a helpful and powerful tool, however it does not provide a clear image of lifetime scaling compared with that of analytical models.

In this paper, a grid lifetime model is presented for the lifetime estimation of a 3-grid ion engine system. Since most of the lifetime simulations so far ended up with electron backstreaming, which is fatal to ion beam acceleration,6-8 the model is constructed to provide a lifetime scaling of the ion engine, which was resulted from such electron backstreaming phenomena. The life-limiting process, which would be ended with electron backstreaming was modeled using the space-charge-limited current density law and a newly introduced parameter called extended effective acceleration length.
Modeling

Life-limiting Process

The life-limiting process is described as follows: 1) charge exchange ion erosion enlarges accel grid hole diameter, 2) the enlarged accel grid hole diameter decreases the negative potential between the screen and accel grids, and 3) the negative potential becomes too small to keep neutralizing electrons away from the discharge chamber. The beginning of life (BOL) and end of life (EOL) of the process are shown in Figs. 1 (a) and (b), respectively. The saddle point voltage at BOL is negatively high enough to expel neutralizing electrons however it cannot expel the electrons at EOL.

Assumption

The basic idea of the model is the extension of the effective acceleration length used in the space-charge-limited current density law and the assumptions made below.

- One-dimensional potential distribution towards the axial direction
- Beam current is kept constant during operation
- The screen grid, accel grid and decel grid voltages are constant during operation
- Grid life is reached at the time when the saddle point potential becomes 0 V
- Most of the accel grid erosion is due to energetic charge exchange ions created between the screen and accel grids - Assumption (1)
- Grid mass loss occurs uniformly on the inner surface of the accel grid and develops towards the radial direction - Assumption (2)
- Beam current density is not depending on the enlargement of accel grid hole diameter. - Assumption (3). (This assumption is derived from the fact that the experiments by Aston et al. showed that the variation of accel grid hole diameter had little effect on beam divergence angle.9 From this it is assumed that ion beam profile and beam cross sectional area do not change during the operation even if the accel grid hole diameter is enlarged by erosion.)

Formulation

It is known that the ion beam flow between the screen and accel grids is well modeled with the space-charge-limited current density law and the effective acceleration length.9,10 Since most of the ions flow

Figure 1. The grid shapes and potentials on the axis at (a) BOL and (b) EOL
nearby the grid axis due to the focusing of ion beams, it is appropriate to use the saddle point potential \(\phi_s(t) \) rather than the accel grid potential \(\phi_a \) for the following equation,

\[
J_{ac} = \frac{4}{9} \varepsilon_0 \sqrt{\frac{2e}{M}} \frac{\phi_s(t) - \phi_a(t)}{l_a^2(t)}^{2/3} \tag{1}
\]

where \(J_{ac} \) is a space-charge-limited current density, \(\varepsilon_0 \) is the permittivity of free space, \(e \) is the electron charge, \(M \) is the propellant molecular mass, \(\phi_s \) is the screen grid potential, and \(l_a(t) \) is the effective acceleration length. In case that ion beam flow is close to the space-charge-limited, beam current density \(J_B \) is well modeled as below using Eq.(1).

\[
J_B = J_{ac} = \frac{4}{9} \varepsilon_0 \sqrt{\frac{2e}{M}} \frac{\phi_s(t) - \phi_a(t)}{l_a^2(t)}^{2/3} \tag{2}
\]

\[
l_a(t) = \sqrt{\left(t_i/2 + l_g\right)^2 + \left(r_s - r_a(t)\right)^2} \tag{3}
\]

where \(t_i \) is a screen grid thickness, \(l_g \) is a screen-to-accel grid separation, and \(r_s \) and \(r_a(t) \) are the screen and the accel grid hole radius respectively. Here a new parameter called extended effective acceleration length \(l_a^* \) is introduced to consider the effect of the enlargement of the accel grid hole diameter (Fig.1.) From Assumption (3), Eqs.(2) and (3), an equation shall be given,

\[
(\phi_s(t) - \phi_a(t))^{3/2} = (\phi_s - \phi_w(0))^{3/2} \frac{l_a^*(t)}{l_a^2(0)} \tag{4}
\]

Since the saddle point potential becomes 0 V at EOL, Eq.(4) gives

\[
r_{aEOL}^2 = \sqrt{\left(t_i/2 + l_g\right)^2 + (r_s - r_{aBOL})^2} \tag{5}
\]

where \(r_{aBOL} \) and \(r_{aEOL} \) are the accel grid hole radius at BOL and EOL, respectively. Equation (5) suggests that the accel grid hole radius at EOL can be estimated from the grid geometry and the saddle point potential of a specified acceleration system at BOL.

If the accel grid hole radius can be expressed with a function of operating time \(t \), the electron backstreaming time is given as follows,

\[
r_a(t) - \sqrt{r_{aEOL}^2 + k\frac{l_e}{j_B^2}t} \tag{6}
\]

where \(k \) is a parameter to consider the grid geometry and physical constants. From Eqs.(5) and (6), the electron backstreaming time is given as follows,

\[
T_{eb} = \frac{r_s - \sqrt{\left(t_i/2 + l_g\right)^2 + (r_s - r_{aBOL})^2} - (t_i/2 + l_g)^2}{r_{aBS}^2} \tag{7}
\]

Taking a ratio to delete \(k \), the following equation is obtained.

\[
\frac{T_{eb}}{T_{eb}^0} = \left(r_s - \sqrt{\left(t_i/2 + l_g\right)^2 + (r_s - r_{aBOL})^2} - (t_i/2 + l_g)^2 \right) \frac{r_{aBS}^2}{r_{aBOL}^2} \times \left(\frac{l_e}{l_g} \right)^{3/2} \tag{8}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Case} & \text{NP/H, A/V}^{1,5} & \phi_{eb} \text{ V} \\
\hline
1 & 1.60 \times 10^{-9} & 300 \\
2 & 1.80 \times 10^{-9} & 300 \\
3 & 2.00 \times 10^{-9} & 300 \\
4 & 2.20 \times 10^{-9} & 300 \\
5 & 2.40 \times 10^{-9} & 300 \\
6 & 2.18 \times 10^{-9} & 200 \\
7 & 2.09 \times 10^{-9} & 250 \\
8 & 1.92 \times 10^{-9} & 350 \\
9 & 1.84 \times 10^{-9} & 400 \\
\hline
\end{array}
\]
Since beam current density actually becomes maximum at the part of the grid center, \(I_a \) and \(I_B \) should be modified to \(I_a/f_a(I_a) \) and \(I_B/f_B(I_B) \) to yield maximum beam currents per hole, where \(I_a \) is the accel grid current, \(I_B \) is the beam current, and \(f_a \) and \(f_B \) are beam flatness parameters of \(I_a \) and \(I_B \), respectively. It should be noted that all parameters in the model are given beforehand or are obtainable either by calculations or measurements.

Sample Calculations

Since the number of lifetime experiments having been conducted so far are too limited to provide us with parametric lifetime data, an evaluation was performed by a numerical code.8) The code calculates variations of erosion with time by solving electrostatic potentials, tracking ion trajectories, evaluating the amount of grid material removed from the grid surface and determining its shape. The following parameters at EOL were obtained for MUSES-C ion engine system12)

- Electron backstreaming time - \(T_{eb} \)
- Accel grid current averaged by time - \(I_a \)
- Accel grid mass loss - \(\Delta m_a \)
- Fraction of accel grid mass loss due to charge exchange ions created over 0 V region upstream of the accel grid - \(\Delta m_{SA}/\Delta m_a \)
- The ratio of accel grid radius between EOL and BOL - \(r_{aeol}/r_{abol}^{Eq.(9)} \)
- \(\Delta m_{aSA}/\Delta m_a \)
- \(r_{aeol}/r_{abol}^{Eq.(5)} \)

<table>
<thead>
<tr>
<th>Case #</th>
<th>(T_{eb}, \text{hrs})</th>
<th>(I_a, \mu \text{A})</th>
<th>(\Delta m_a, \text{mg})</th>
<th>(\Delta m_{SA}/\Delta m_a)</th>
<th>(r_{aeol}/r_{abol}^{Eq.(9)})</th>
<th>(r_{aeol}/r_{abol}^{Eq.(5)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35750</td>
<td>0.86</td>
<td>3.17</td>
<td>0.85</td>
<td>1.32</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>28000</td>
<td>0.98</td>
<td>3.04</td>
<td>0.86</td>
<td>1.31</td>
<td>1.09</td>
</tr>
<tr>
<td>3</td>
<td>24500</td>
<td>1.12</td>
<td>3.05</td>
<td>0.88</td>
<td>1.31</td>
<td>1.09</td>
</tr>
<tr>
<td>4</td>
<td>21000</td>
<td>1.26</td>
<td>2.98</td>
<td>0.84</td>
<td>1.30</td>
<td>1.09</td>
</tr>
<tr>
<td>5</td>
<td>19000</td>
<td>1.39</td>
<td>2.98</td>
<td>0.88</td>
<td>1.30</td>
<td>1.09</td>
</tr>
<tr>
<td>6</td>
<td>1750</td>
<td>1.45</td>
<td>0.32</td>
<td>0.91</td>
<td>1.04</td>
<td>1.02</td>
</tr>
<tr>
<td>7</td>
<td>11250</td>
<td>1.22</td>
<td>1.63</td>
<td>0.90</td>
<td>1.17</td>
<td>1.05</td>
</tr>
<tr>
<td>8</td>
<td>42750</td>
<td>1.05</td>
<td>4.61</td>
<td>0.85</td>
<td>1.44</td>
<td>1.14</td>
</tr>
<tr>
<td>9</td>
<td>83500</td>
<td>0.98</td>
<td>7.24</td>
<td>0.82</td>
<td>1.64</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Figure 2. Comparison of lifetimes in different beam currents

Figure 3. Comparison of lifetimes in different accel grid voltages

The grid geometry and operating point data used for calculation are given as follows. The screen, accel and decel grid hole diameters are 3.0 mm, 1.8 mm and 2.6 mm, respectively. The thickness of each grid is 1.0 mm.
mm. The separation distances of the screen-to-accel and accel-to-decel grids are 0.5 mm, respectively. The screen grid and decel grid potentials are 1500 V and –30 V, respectively. The propellant utilization efficiency η_u is 0.67. The grid material is a C/C composite.

In Table 1, the sets of input parameters for the simulation are tabulated. The lifetime dependence on beam current was examined in the Case #1 to #5 with same accel grid voltage of –300 V, and lifetime dependence on accel grid voltage was examined in the Case #6 to #9 with the same beam current as in the Case #3 (5.5×10^{-4} A.) For the sake of simplicity, one set of grid holes was calculated. The leaking neutral atom density distribution was calculated under the condition of the Case #3 and $\eta_u=0.67$. This neutral atom density distribution was used for all other calculations. Boltzmann distribution of electron temperature T_e was selected for electron density distribution. The electron backstreaming time in simulation was defined as the time when the saddle point potential becomes $-kT_e/e$. The electron temperature was assumed to be 5 eV.

In Table 2, all the lifetime parameters at EOL are shown. For comparison, the ratio of accel grid hole radii between EOL and BOL was evaluated using the equation

$$r_{aEOL} = \sqrt{r_{aBOL}^2 + \Delta r_{a}}$$

where t_a is accel grid thickness and γ is a specific weight of the grid material.
Beam Current Dependence

Figure 2 shows a comparison of lifetime curves obtained by the simulation and the model. A reference point was provided by the parameters with subscripts of 0 in Eq. (9), which were from the Case #3, and all data were plotted against normalized perveance per hole. The figure shows that the lifetime curve predicted by the model agrees quite well with the simulation.

As shown in Table 2, the calculated values of r_{aeOL}/r_{abOL} from Eq.(5) were around 1.1 and agreed qualitatively well with the simulated values, around 1.3. The calculated values of $\Delta m_{aSA}/\Delta m_a$ were around 0.84 to 0.88, which were close to 1. The most of the accel grid erosion causes due to the charge exchange ions created between the screen and accel grids. —This is confirming the Assumption (1).

Shown in Figure 4 are the figures of grid shapes, potential distributions and ion beam trajectories at EOL. In the figures, the potentials are shown in the upper and the ion beam trajectories in the lower. The trajectories running downstream from the discharge chamber are the ones of mainstream ions and the trajectories near the accel grids are the ones of charge exchange ions. (Here only trajectories of the ions that impinge on the accel grid were drawn.) From the figures, it is confirmed that most of the erosion occurs on the inner face of the accel grid and develops towards the radial direction by the impingement of charge exchange ions created between the screen and accel grids. These facts prove that Assumptions (1) and (2) are valid.

Shown in Figure 5 are the variations of ion beam profiles with time for the Case #3 conditions. The beam diameters at the most focused positions at BOL, MOL and EOL are 1.36 mm, 1.52 mm and 1.54 mm, respectively. The ratio of beam cross sectional areas between MOL and BOL (in the former half of the operation) is 1.24, and the ratio between EOL and MOL (in the latter half of the operation) is about 1.05. Although Assumption (3) was not exactly supported in the former half of the operation, it was supported in the latter half of the operation with good precision.

Dependence on Accel Grid Potential

The lifetime dependence on accel grid voltage was investigated by changing the accel grid voltage from –200 V to –400 V without changing beam current. The lifetime curves are shown in Figure 3 using parameters of the Case #3 for setting a reference point. The curve for the model shows a very good agreement with that of the simulation. In Table 2, the calculated values of

![Figure 5. Variations of ion beam profiles with time in the Case #3.](image)

![Figure 6. Dependence of grid mass loss on $i_{aB}^{2/3}T_{eb}$](image)
\(\frac{r_{\text{EOL}}}{r_{\text{BOL}}} \) from Eq.(9) were around 1.02 to 1.19 and agreed well with the simulated values in low negative voltage (1.04 and 1.17) however they agreed poorly in high negative voltage (1.44 and 1.64). The calculated values of \(\Delta m_{\text{SA}}/\Delta m_{\text{a}} \) were around 0.82 to 0.91, which are close to 1. This is confirming the Assumption (1).

Dependence of Grid Mass Loss on Beam Currents

Shown in Figure 6 are the values of \(\Delta m_{\text{a}} \) for \(i_{\text{B}}^{2/3}T_{\text{eb}} \), which were obtained by the simulation. The figure shows that they were plotted almost linearly. This indicates that the grid mass loss is well modeled so as to be in proportion to \(i_{\text{B}}^{2/3}T_{\text{eb}} \).

This dependence leads to the following scaling law in grid structural failure given as

\[
\frac{T_{\text{sf}}}{T_{\text{sf}0}} = \frac{i_{\text{B}}^{2/3}}{i_{\text{B}0}^{2/3}}
\]

where \(T_{\text{sf}} \) is a time for structural failure.

Summary

A scaling model for grid lifetime was presented for a 3-grid ion engine. The process for electron backstreaming was modeled with the space-charge-limited current density law and the extended effective acceleration length considering that the electron backstreaming determined the lifetime of the ion engine. All the parameters in the model can be obtained explicitly either by calculations or measurements. The characteristic of the model is that lifetime strongly depends on beam current and accel grid voltage. An evaluation was made to validate the model using a computer program and showed that the model agreed quite well with simulations and gave good scaling for grid lifetime.

References

