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A new stationary hydrodynamic model of the Hall thruster has been developed. The 
analysis of this model shows that for typical SPT operating conditions, a relatively thin 
layer with large gradients of plasma parameters can exist within the flow inside the SPT 
channel. A considerable part of the ion acceleration occurs within this layer, whose 
thickness can be determined by the electron viscosity. In good agreement with the 
predictions of our model, recent LIF measurements show a clear manifestation of ion 
acceleration in a relatively thin layer in the near-cathode region of the thruster. 
 
  

1. Introduction 

For the first time, the stationary plasma thrusters (SPT) 
or Hall thrusters were suggested and developed in the 
Soviet Union by A. I. Morozov [1]. By now, many of 
the Russian spacecrafts were equipped by the SPT. 
These thrusters are widely used in the active space 
experiments as well. 
 
Although a good deal of investigation is already done 
in this field (see reviews [1–5]), the physical processes 
within the thruster channel are far from being 
completely understood. For example, many questions 
concerned with not only oscillatory regimes but with 
the quasistationary nominal regime with the low level 

of oscillations still remain to be answered. To study 
the nominal regime of SPT operation, several 
relatively simple hydrodynamic models were 
suggested (see, e.g., [6–8]). 
 
In the present paper we develop a new stationary 
hydrodynamic model for Hall thrusters. Our model is 
more general than the models, which were suggested 
previously. 
 
 



Table 1. Typical parameters of plasma flow within the SPT channel  
 Near-anode region Acceleration zone 
Electron temperature, Te (eV) 5.5 14.8 
Number density of neutrals, cm-3 9.5⋅1014 1.2⋅1013 
Number density of electrons, cm-3 9.7⋅1010 7.1⋅1011 
Axial ion velocity, cm/s 0.13 8.2⋅104 

 
The paper is organized as follows. In the 2nd section 
we discuss the typical values of different plasma 
parameters within the SPT channel.  Some of these 
parameters are directly measured, the others can only 
be estimated. In the 3rd section the basic equations 
governing the dynamics of plasma within the channel 
are presented. These equations are analyzed in detail in 
the 4th section. The main results of the analysis are 
summarized in the 5th section of the paper.  
 
 

 
 

2. Typical Plasma Parameters 

Within the SPT Channel 

To investigate the physical processes within the SPT 
channel, the reliable values of different parameters are 
of crucial importance. The most of these parameters 
have already been measured, but the experiments were 
carried out with different SPT models and/or for 
different regimes of SPT operation. Now for most of 
SPT models we have no comprehensive data sets.  
 
In our study we consider a low-power Hall thruster, 
which is developed at Stanford University and 
described elsewhere [9, 10]. 

 
We split the thruster channel into two parts, namely, 
near-anode region and acceleration zone, which is 
located in the vicinity of the exit. The plasma 
parameters, which can be considered as typical for 
these two zones within the thruster channel, are 
presented in Table 1. For definiteness, we take data 
obtained for discharge voltage 160 V [11]. Figure 1 
shows the laser induced fluorescence (LIF) 
measurements of axial ion velocity [11]. The total 
length of the thruster channel is 80 mm. The distance 
is measured from the exit plane, the negative 
coordinates correponding to the interior of the thruster. 
 
 

3. Hydrodynamic Equations Describing 

Stationary Regimes of the SPT  

3.1. The Basic Equations 
Strictly speaking, the behavior of all plasma 
components within the SPT channel can be described 
only by the corresponding kinetic equations in the six-
dimensional phase space for each component and we 
should take into account both the elastic and inelastic 
collisions of the particles considered with each other 
and with the walls of the channel. Indeed, the 
experiments show that the profiles of different 
physical quantities describing the plasma flow are 
essentially two-dimensional (see, e.g., [12]). The 
electron distribution function is quite complicated and 
can be approximately considered as having three 
components [13]. Simple estimates show that the most 
of ions and neutrals suffice only a few collisions when 
they transit the channel. However, obtaining the 
solution of three coupled kinetic equations is a very 
complicated problem requiring extensive numerical 
computations. Furthermore, one can encounter with 
significant difficulties when interpreting the results 
obtained. Therefore, to understand the physics of the 
processes within the thruster channel, we need a 
simple mathematical model, which can easily be 
investigated analytically or numerically. In this section 
we describe a one-dimensional stationary model based 
on hydrodynamical description of plasma components. 
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Figure 1. Ion axial velocity Vi (m/s)
versus distance d (mm) from the exit plane.



Nevertheless, we write the basic equations in the time-
dependent vector form and the simplifications 
mentioned above will be made later. 
 
3.1.1. Neutrals 
Suppose that all the neutrals leave the anode with the 
same velocity Vn, directed along the thruster axis. If 
we neglect the recombination and charge exchange 
processes, this velocity does not vary, 

Vn = const. 
In addition, we have the continuity equation for 
neutrals, 
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where Kion is the ionization rate constant.  
 
3.1.2. Ions 
The continuity equation for ions is given by 
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Here and in the following we use the quasineutrality 
assumption, i.e., we suppose that the number densities 
for electron and ions are approximately equal and 
introduce for them the same notation Ne . 
 
To obtain the hydrodynamic equation of motion for 
ion component, we can choose a small stationary 
volume and consider the balance of momentum of ions 
within this volume. Thereby we get 
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where Vni is the ith component of the velocity of 
neutrals and summation over the repeating indices is 
assumed. The last term describes the change of 
momentum due to ionization processes. Combining 
this equation with the continuity equation, we obtain 
the equation of motion for ion component, 

.)()( ioninii en
i NNK

M
e

t
VVEVV

V
−+=∇⋅+

∂
∂

 

We observe that the ionization results in the effective 
"retardation" of ions. 
 
3.1.3. Electrons 
For electrons we have the continuity equations, similar 
to that of ions, 

,)(div ione ene
e NNKN

t
N

=+
∂

∂
V  

the equations of motion [14], 

,1
preqpqrpe

q

pq

p

e

epe
e

RBV
c

EeN
xx

P
dt
Vd

mN

+





 +−

∂
∂

−
∂
∂

−= ε
π  

and the energy balance equation, 
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Here εpqr is the antisymmetric unit tensor and 

.
p

ep
e

x
V

tdt
d

∂
∂+

∂
∂=  

In contrast to the energy balance equation in [14], we 
include the terms due to ionization/recombination 
processes and interaction of the plasma with walls of 
the channel. In these equations, Pe = Ne Te is the 
electron pressure, Te is the electron temperature, I is 
the ionization threshold, πpq is a stress tensor, by Qwall 
we denote the heat transferred from the walls of the 
channel to electron gas, R = Ren + Rei is the change of 
momentum due to collisions of electrons with neutrals 
and ions, Q = Qen + Qei is the corresponding heat 
produced in the electron gas. We have [14] 
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Since, as a rule, the velocity of electrons is much 
greater than that of neutrals and ions, we get 

.eQ RV−≈  

The force exerting on the electron gas can be divided 
into two parts, i.e., a friction force Ru and a thermal 
force RT  , 

,Tue RRR +=  
These forces are given by [14] 
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where u = Ve  – Vn,i ≈ Ve . Analogously, the electron 
heat flux is [14] 
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The coefficients α , Tu
||β , and e

||κ will not be used in 

the following. If the electrons are magnetized, i.e., 
1/1 <<= eee τωδ  (ωe is the electron gyrofrequency 

and τe is a characteristic time interval between the 
collisions distorting the electron trajectory), the other 
coefficients are given by 
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where for coefficients we use the notation suggested in 
[14]. If the Coulomb collisions dominate, we can use 
the values given in Table 2 (see, e.g., [14]). 
 
Table 2. The coefficients for calculating transport 
properties of a plasma with Coulomb collisions 
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1.7 5.1 3/2 4.7 5/2 0.7 2.1 1.0 
 
The stress tensor πpq is given by 
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where the quantities W(i)pq, i = 0, ... , 4, can be 
expressed in terms of the rate-of-strain tensor, 
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where δpq is the Kronecker delta. If the magnetic field 
is directed along the z-axis, we have 
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the other components are equal to zero. If, again, 

1/1 <<= eee τωδ , the viscosity coefficients are 
given 
by 
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where the coefficients for Coulomb collisions are 
given in Table 2 (see, e.g., [14]). 
 
3.2. The Model  Equations 
We analyze the thruster model in the Cartesian 
coordinates. Let x-axis is directed along the symmetry 
axis of the thruster, the origin being at the anode. The 
thruster channel is considered as a flat slab, which is 
perpendicular to z-axis and infinite in the y-direction 
corresponding to azimuthal direction in the real 
thruster. The magnetic field is parallel to z-axis 
corresponding to radial direction in the thruster. 
Suppose that all parameters describing the plasma flow 
can change only in the x-direction and does not depend 
on time, i.e., we seek a stationary one-dimensional 
solution. The velocity of neutrals is along the x-axis. 
 
Combining the continuity equations for all plasma 
species, we easily obtain 
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where j is the total current density, 
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These equations allow us to exclude the number 
density of neutrals and the ion velocity along the 
thruster channel. Then from the electron continuity 
equation we obtain  
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The x-components of the equations of motion for ions 
and electrons are as follows: 

    ),(ion inene
i

ie VVNNKEeN
dx
dV

VMN −+=       (1) 

,

)'(1

x
xxe

eye
ex

exe

R
dx

d
dx
dP

BBV
c

EeN
dx

dV
VmN

+−−







 +−=

π
      (2) 



where B is an external magnetic field and B' is a 
disturbance of the magnetic field due to plasma 
currents in the channel. 
 
If we consider only large-scale plasma motions such 
that the characteristic length is much greater than the 
Debye length, then the quasineutrality holds, i.e., the 
difference between the number densities of electrons 
and ions is much less than the electron density,  

|Ne – Ni| <<  Ne. 
In this case the Poisson equation is not required, 
instead, the electric field can be determined from the 
equations of motion for electrons at the final stage of 
analysis upon obtaining the profiles for all 
hydrodynamic quantities. At the first stage, the electric 
field can be considered as an auxiliary quantity and it 
is convenient to exclude it. Subtracting Eq. (1) from 
(2), we get  
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In addition, we have the y-component of the electron 
equation of motion,  
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a stationary energy balance equation, 
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and a Maxwell equation, 
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To proceed further, we must substitute the expressions 
for the friction force, heat flux, stress tensor, and heat 
production considered in the previous subsection into 
Eqs. (3)–(6). For simplicity, we neglect the energy 
exchange between electrons and walls of the channel, 
Qwall ≈ 0. 

To analyze the system of equations obtained, it is 
useful to rewrite it in terms of the dimensionless 
variables, 
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where the values Nn0, Vex0, Vey0, and T0 used for 
normalization are arbitrary and can be chosen from the 
consideration of convenience. 
 
Thereby we obtain the following system of equations 
(for brevity, we omit the tildes over the dimensionless 
variables and the subscript e for electron velocity): 
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Here we introduce a set of characteristic lengths, 
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and a set of dimensionless constants, 
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By M we denote an electron "Mach number," 
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The characteristic lengths, which are proportional to l, 
depend on the electron collision frequency 1/τ, which 
is a sum of frequencies for Coulomb collisions and 
elastic collisions with neutrals (we do not take into 
account effective collisions of electrons due to plasma 
turbulence because there exist no reliable estimates of 
the corresponding frequency),  
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where σt is the momentum transfer cross section, 
σt  = (0.9–2.5)⋅10–15 cm2 [15], Λ is the Coulomb 
logarithm, which for low electron temperatures, 
Te < 50 eV, is given by [14] 

ee TN log45.3log15.14.23 +−=Λ  

(here the number density and temperature of electrons 
are measured in cm–3 and eV, respectively). 
 

These characteristic frequencies calculated for typical 
plasma parameters within the thruster channel (see 
Table 1) are shown in Table 3.  
 
Table 3. Typical frequencies for elastic collisions of 
electrons in the SPT channel 
 near-anode region acceleration zone 

cν , s–1 2.8⋅105 4.8⋅105 

nν , s–1 1.3⋅108 2.8⋅106 
  
We observe that the elastic collisions with netrals 
dominate in the regions considered. 
 
Before proceeding to analysis of the system in detail, 
we note that there exists a characteristic length 

cm)15.0( ÷≅BL  

determined by the profile of the external magnetic 
field. The other important scale, which does not appear 
in the equations, but determine the conditions for these 
equations to be applicable, is the electron Larmor 
radius, 

,
e

TeV
ω

ρ =  

where VTe is the electron thermal velocity, 
VTe = (Te / m)1/2. The following relationship holds: 
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The values of the characteristic lengths may differ by 
several orders of magnitude. This fact is illustrated by 
Table 4, where shown are the values of these scales in 
the near-anode region and acceleration zone. 
 
Table 4. Typical values of some characteristic lengths 
for plasma flow in the SPT channel 
 near-anode 

region 
acceleration 

zone 
∆ion , cm 0.43 0.33 
l, cm 3.2⋅10–2 1.5⋅10–1 
∆vxx , cm 3.5⋅10–5 3.2⋅10–2 
∆T , cm 5.0 7.9⋅10–2 

 
The analysis of these equations, numerical and/or 
analytical, is a rather complicated problem. The first 
stage of the analysis is usually carried out with the use 



of asymptotic method of multiple scales (see, e.g., 
[16]). This method was proved to be efficient in the 
analysis of fine structure of shocks in gases and 
plasmas (see, e.g., [17]). In addition, it allows one to 
determine the physical mechanisms responsible for the 
formation of different structures in the gas or plasma 
flow. In subsection 4.1, using a relatively simple 
example concerned with the plasma flow in the near-
anode region, we dwell upon some details of the 
asymptotic analysis procedure. 
 
Finally, we point out the obvious fact that the largest 
scale for the plasma flow within the thruster channel 
cannot exceed the value LB , which can be significantly 
less than the thruster channel length or has the same 
order of magnitude. 
 

4. Analysis of the Model Equations 

When analyzing a plasma flow in some region of the 
thruster channel, it is convenient to choose some point 
within this region and use the values of N0, Vx0, Vy0, 
and T0 at this point for normalization. Then all the 
values of N, Vx,y and T are of the order of unity within 
the region considered. The constant γ remains arbitrary 
and must be determined during analysis from physical 
considerations. 
 
4.1. Near-Anode Region 
Table 4 shows that the characteristic length ∆T is the 
largest in the near-anode region and 

.ion TBL ∆<<≤∆  

Because ∆T is too large, we try to find a solution 
corresponding to the largest of the remaining scales, 
i.e., LB and ∆ion. At first, we suppose that the change 
for all the quantities on the scale considered is of the 
order of unity. Next, in each equation we find the 
leading terms having the largest magnitude. 
 
Equations (7) and (8) require no transformation. In Eq. 
(9) we observe that the terms due to electron inertia 
and viscosity are negligible. Indeed, the first term in 
Eq. (9) is much less than the second. The left-hand 
side in Eq. (10) become comparable with the 2nd term 
on the right-hand-side when the characteristic scale of 
the plasma flow is about l, on larger scales the left-
hand-side is small, and so on. Omitting these small 
terms, from Eq.(10) after some straightforward 
manipulations we obtain  
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We can use this relationship for eliminating Vy from 
the remaining equations. 
 
Substituting Eq. (13) into Eq. (10), combining it with 
the continuity equation (8), and neglecting some small 
terms, we get 
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where we introduced a characteristic length 
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which is comparable with ∆T . 
 
From the energy balance equation and we obtain 
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(for simplicity, we suppose that τ does not vary 
significantly    on    the   scales    considered).      Since  
∆0 >> ∆ion , the right-hand-side in (15) is small and we 
can neglect it. Upon integrating the equation obtained, 
we get  
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'
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2
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N
B

dx
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 (16) 

where the constant can be determined from the 
boundary conditions. From Eq. (16) it is easily seen 
that there exist the solution 

,const=T  



although the other quantities does change. 
 
Note that the factor before the derivative of the 
electron velocity [see Eq. (14)] may vanish and as a 
result, a singularity may occur in the solution. This 
factor vanishes if Vi

2 = T / M  (here the variables are 
not dimensionless). Numerical integration of the 
system of equations (7), (8), (14), (16) with different 
values of the temperature gradient at the initial point 
shows that solutions with singularity do exist. When 
approaching such a singularity, the gradients are 
increased and the neglected terms become significant. 
When we take these terms into account, the 
discontinuity disappears, instead we obtain a thin layer 
with large but finite gradients. This thin layer is 
embedded into the plasma flow with small gradients. 
The largest of the remaining scales are related to 
electron viscosity.  Thus, it is natural to suppose that 
this "discontinuity", which in the following will be 
called "an acceleration zone," is formed by electron 
viscosity. 
 
 
 
4.2. Acceleration Zone 
In the point considered to be typical for acceleration 
zone, we have 

.ion vxxT ∆<<∆<<∆  
∆ion is again the largest but it is small enough thereby 
demonstrating that the ionization processes are also 
significant in this region. Proceeding to smaller scales, 
∆vxx , we observe that the terms due to electron thermal 
conductivity are dominant in the energy balance 
equation (11). From this equation it follows that the 
temperature variations on such scales can be neglected. 
As in the case of larger scales, we omit the electron 
inertia terms. In addition, the Lorentz force is small as 
compared to the forces due to viscosity. Neglecting the 
small terms, from Eqs.(8)–(10) we obtain 
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Integrating Eq. (19), we get 

.
dx

dV
dx

dV xy

δ
γ−=    (20) 

The integration constant is equal to zero in the first 
approximation, because all the derivatives should 
vanish at the boundaries of the thin layer within the 
acceleration zone. Combining Eq. (20) with Eq. (18) 
and using the continuity equation to exclude the 
electron number density, after some straightforward 
manipulations we obtain 
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where χ ≈ 0.74. Now we prove that this equation have 
solutions resembling the shock waves. 
 
If instead of the integration constant const we 
introduce two constants, Va and Vb such that 

22)1( MA
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and 

),()1(const 2
ba VVA ++−=  

this equation takes the form 
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M
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Without the loss of generality, we can assume that  
Va < Vb. Taking into account that l is negative, we see 
that this equation has a monotone increasing solution 
approaching Va and Vb as  x → – ∞ and x → + ∞ , 
respectively. 
 
Although the general system of equations (7)–(12) 
appears to be more elegant when written in terms of 
electron velocities, in this region, where the ions are 
drastically accelerated, it is more convenient to rewrite 
Eq. (22) in terms of ion velocity and ion Mach 
number, 

),)(( abv VVVV
dx
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where  
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e
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V is the ion velocity; all variables are dimensionless 
except x and characteristic lengths li and ∆v , which are 
measured in cm. The solution to Eq. (24) is 
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where x~ = (Vb – Va) (x – x0) / (2∆v). 
 
Let us obtain the relationship between the velocities 
upstream and downstream of the discontinuity. For 
simplicity, chose the values at the point b for 
normalization. Then Vb  = 1 for both ion and electron 
velocities, and T = 1. From Eq. (22) rewritten in terms 
of ion velocities, we obtain 

.1
2M

=aV  

This equation is an analogue of the Rankine-Hugoniot 
relations for shock waves. We observe that the 
velocities upstream and downstream are different if  
M  > 1, the difference vanishes as M → 1. 
 
From Eq. (25) it follows that 

,4M
a

b =
ε
ε

 

where εa,b are ion kinetic energies upstream and 
downstream the discontinuity. 
 
The thickness of the acceleration zone can be 
estimated as 
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where the derivative is calculated at the point of 
inflection on the ion velocity profile. The quantity ∆acc 
can be considered as a rather rough estimate because 
for such small scales the hydrodynamic approach fails 
to be applicable. However, the results obtained from 
hydrodynamic equations in similar situations usually 
seem to be quite reasonable (see, e.g., [17]). In our 
case ∆acc ≈ 3.5 mm in good agreement with 
experimental results shown in Fig. 1.  
 
Finally, we discuss the procedure for obtaining a 
solution describing the plasma flow within the thruster 
channel from anode to exhaust. 
 
The first approximation of the solution is obtained as 
follows (compare with the similar problem for shocks, 
see, e.g., [17]). Although for the low-power thruster 

considered, the acceleration zone approximately 
coincides with the exit plane, this is not the case for 
other SPT (see, e.g., [12]). Here we assume that in the 
near-cathode region the gradients of the plasma 
parameters are small enough for electron viscosity 
effects to be negligible. In this case the plasma flow 
both in the near-anode and near-cathode regions can 
be described by the same equations. Suppose that we 
know all parameters of plasma flow in the vicinity of 
the anode and near the exhaust. Then integrating 
Eqs. (8), (14) and (15) from anode to exhaust and vice 
versa, we obtain the fragments of the solution 
describing the large scale plasma flow. Next, we find a 
point within the channel, where the analogue (25) of 
the Rankine-Hugoniot relations is satisfied. It can be 
easily shown that this point exists and is unique. At 
this point the acceleration zone is located. At the first 
approximation, the thickness of the zone is neglected, 
i.e., we obtain the solution with a discontinuity. If 
required, the finite thickness of the zone can be taken 
into account in the second approximation [16, 17] and 
as a result a smooth solution can be obtained. 
Analytical methods for obtaining such solutions are 
outlined in [16]. However, since the corresponding 
formulas are cumbersome, usually the numerical 
methods are used rather than analytical. 
 

5. Conclusions 

We develop a new stationary hydrodynamic model for 
Hall thruster. Our model is more general than the 
models suggested previously. 
 
The model equations are analyzed using the 
asymptotic method of multiple scales. The analysis 
shows that under the typical conditions for SPT 
operation a "discontinuity" can develop in the plasma 
flow within the SPT channel. Within such a 
"discontinuity" a considerable acceleration of ions 
occurs. The thickness of the "discontinuity" can be 
determined by the electron viscosity. 
 
It is worth noting that in some previous papers (see, 
e.g., [6, 7]) the attempts were made to find a solution 
without a discontinuity. However, if such a solution 
does exist from the formal viewpoint, the question 
remains to be answered whether this solution is typical 
for real thrusters. To answer this question, additional 
experimental measurements of the plasma flow 
parameters within the SPT channel are required. The 
results of the measurements combined with numerical 



calculations can shed some light on the role and nature 
of different dissipative mechanisms (for example, the 
role of anomalous thermoconductivity, dissipation due 
to collisions of the thermal electrons with the walls of 
the channel, etc.). Another question, which is closely 
related to the previous one, is concerned with the 
stability of the solutions with the discontinuity and 
without it. This question will be addressed in the next 
paper. 
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