
Effects of Ion Collisions on Ion Acceleration
by Beating Electrostatic Waves.

R. Spektor∗ and E.Y. Choueiri†
Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL)

Mechanical and Aerospace Engineering Department
Princeton University, Princeton, New Jersey 08544

IEPC-01-65‡

March 17-21, 2003

A numerical model of the nonlinear interaction between beating electrostatic waves and magne-
tized ions, including collisions, is presented. Previous studies of the beating electrostatic waves
(BEW) interacting with a single ion showed the ability of this mechanism to accelerate ions from
arbitrarily low initial velocities, and have revealed the fundamental conditions for this interaction to
occur. The present study extends the analysis to a large number of ions and includes ion-ion colli-
sions. The numerical investigation combines a dynamical description for the ion-wave interaction
and a Monte Carlo simulation of the collisions. Despite the thermalization role of collisions BEW
acceleration was found to yield larger heating rate and higher particle energies than the better known
interaction with the single electrostatic wave (SEW).

I. INTRODUCTION

Acceleration of magnetized ions by beating electro-
static waves (BEW) is a nonlinear phenomenon that may
be occurring in nature and may have interesting appli-
cations to various problems including spacecraft propul-
sion. Observations made with the Topaz 3 rocket [1] in-
dicated that ions are accelerated, in a region of natural
electrostatic wave activity, in the topside ionosphere to
the escape velocity. A puzzling issue is that initial ve-
locities of these ions are significantly below the previ-
ously known threshold required for resonant acceleration
by electrostatic waves. The threshold was derived in the
context of ion interaction with a single electrostatic wave
(SEW) [2, 3].

Benistiet al. [4, 5] proposed a non-resonant accelera-
tion mechanism that relies on nonlinear interaction of an
ion with a pair of beating waves. They showed that if the
criterion

nωc = ω2 − ω1, (1)
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is satisfied between any pair of electrostatic waves, ions
can be accelerated from an arbitrary low initial veloc-
ity. Equation (1) states that the difference between the
frequencies of the two beating wavesω1 andω2 should
equal to an integer multiple,n, of the ion cyclotron fre-
quencyωc. This is in great contrast with the well known
SEW-ion interaction studied theoretically by Karneyet
al. [2, 3], Zaslavskyet al. [6, 7], and Chiaet al. [8, 9],
and experimentally by Skiffet al. [10]. These studies
showed that for acceleration to take place ion initial ve-
locity has to be within a resonance band of the wave
velocity. Another fundamental understanding obtained
from these studies was that the ion motion during SEW-
ion acceleration is always stochastic.

Choueiri and Spektor [11] investigated the beating
wave acceleration mechanism theoretically and found
that while Eq. (1) isnecessaryfor the acceleration to oc-
cur, it is not a sufficient condition. Spektor and Choueiri
[12] derived and verified the necessaryand sufficient
conditions for interaction, also discussed in section II.
When these conditions are satisfied, an ion with an arbi-
trary low initial velocity can accelerate through a regular
(non-stochastic) motion in the electric field of the beating
waves, then reach a threshold above which acceleration
continues more vigorously (stochastically).

Since the BEW acceleration can increase the perpen-
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dicular velocity ofall ions, as opposed to only the res-
onant part of the distribution function, it is of particular
interest to spacecraft propulsion applications where ac-
celeration or heating efficiency is of prime importance.
In order to obtain the first indication of the existence
of this mechanism we have designed and built a dedi-
cated experiment using a helicon source and RF antenna
to launch pairs of beating waves [13].

In order to guide the design of the experiment and
help in interpreting its results we needed a model of the
interaction that more resembles the case of a real plasma
than does the single ion model. Such a model should ac-
count for the interaction of the waves with large amount
of particles, and most importantly ion-ion collisions. In
this paper we present such a model based on using Monte
Carlo techniques to describe collisions, and solving the
equation of motion between collisions. We use the simu-
lation to study parametrically the effects of ion collisions
on the heating rate and attainable average energy for both
SEW and BEW.

In section II we review the collisionless model that
describes the interaction of a single particle with a spec-
trum of electrostatic waves. We also review previous
findings resulting from that model. In section III we
present the numerical model that allows tracking a large
number of ions and account for a finite collision rate. In
section IV we present and discuss the results of our nu-
merical investigation, and in section V we summarize our
findings and deduce a phenomenological picture that il-
lustrates the fundamental differences between BEW and
SEW ion acceleration.

II. SINGLE PARTICLE MODEL

A theoretical model for beating electrostatic waves
interacting with a single ion is given in [4, 5, 12]. The
description, which latter in this paper is augmented with
inclusion of collisions and the ability of tracking many
ions, is shown schematically in Fig. 2. The schematic
shows an ion in a constant magnetic field Bẑ and electro-
static wave traveling in transverse directionx̂. The wave
interacts with a gyrating ion causing a change in its Lar-
mor radius. Because the magnetic field is constant, an
increase in the Larmor radius directly corresponds to the
increase in the ion’s perpendicular velocity and thus its
kinetic energy. The equation of motion governing the in-

FIG. 1: A single ion of chargeq and massm in a constant
homogeneous magnetic field Bẑ interacts with an electrostatic
wave. The wavenumber and electric field of the wave is paral-
lel to thex-axis.

teraction between a spectrum of propagating electrostatic
waves and a single ion can be easily derived [2, 8]:

d2x

dt2
+ ω2

cx =
q

m

∑

i

Ei sin(kix− ωit + ϕi), (2)

where x and t are the coordinate and the time vari-
ables,q andm are the charge and the mass of the ion,
ωc = qB/m, Ei, ki, ωi, and φi are the amplitude,
wave number, frequency and phase of theith electrostatic
wave. While Fig. 2 shows a single wave, a similar picture
can be drawn for a spectrum of electrostatic waves trav-
eling in the same direction. It is convenient to normalize
the above equation and express it in the canonical form
[14, 15]:

H = ρ2/2 +
∑

i

εi

κi
cos(κiρ sin θ − νiτ + ϕi), (3)

where H is the Hamiltonian of the system,κi =
ki/k1, νi = ωi/ωc, τ = ωct, εi = (k1qEi)/(mω2

c ), ρ
2 =

X2 + Ẋ2, andX = k1x, Ẋ = dX/dτ , so thatX =
ρ sin θ, Ẋ = ρ cos θ. Whereθ is the cyclotron rotation
angle measured clockwise from they-axis as shown in
Fig. 1 , andρ is the normalized Larmor radius. Equations
(2) and (3) could be solved numerically with either con-
ventional4th order Runge-Kutta scheme or a symplec-
tic approach. We have used the symplectic integration
method developed by Candy and Rozmus [16] to study
the behavior of a single ion interacting with one or two
propagating electrostatic waves.

We were able to confirm [12] that while a single elec-
trostatic wave produces some ion heating under restricted
(resonance) conditions, two beating waves can result in
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ion acceleration from arbitrary low initial velocities. We
have also shown that Eq. (1) describes thenecessary, but
notsufficientcondition for that heating to take place. The
necessaryandsufficient conditions for ion heating by the
beating electrostatic waves are [12]:

nωc = ω2 − ω1, (4a)

H(ρ; θ) = HH > H(ρ ' ν −√ε; θ = π), (4b)

whereHH is the value of the Hamiltonian evaluated at
the hyperbolic point as described in Ref.[12] and shown
schematically in Fig. 2.

The schematic shows the possible acceleration pro-
cesses. Particle 1 is accelerated stochastically in both
cases. Particle 2 with initial energy below the SEW res-
onance threshold (ρ = ν − √ε) is affected by BEW but
is never allowed to reach the stochastic region. While
particle 3 remains unaffected by the SEW interaction, it
can be effectively accelerated by BEW through regular
(non-stochastic) motion that allows it to reach stochastic
region, where more rigorous acceleration takes place.

III. INCLUDING COLLISIONS

Collisions alter the picture described in the previous
section drastically. Without collisions an ion whose ini-
tial velocity (Hamiltonian) is below that corresponding to
Eq. (4b), particle 2 in figure 2b will never be effectively
accelerated by the waves. However, a collision would in-
stantaneously change that ion’s trajectory and place it in
a part of phase place where Eq. (4b) is satisfied.

In this section we consider ion collisions only.
Coulomb ion collisions are of interest since they thermal-
ize the heavy species energy and since our main focus is
ion heating.

To introduce collisions into our numerical model we
follow the classical work of Takizuka and Abe [17]. We
model Coulomb collisions as small angle binary colli-
sions and assume that on a sufficiently small time scale
we can uncouple particle motion from collisions. Thus
our algorithm consists of two parts. We move all parti-
cles between collisions according to the equation of mo-
tion prescribed by the single particle collisionless model,
Eq. (2). We then use the Monte Carlo approach to deter-
mine randomly the collision partners and the scattering
angles for each collision.

FIG. 2: Poincare cross-section (phase diagram) schematic.
The figure shows typical trajectories for various initial con-
ditions of ion interacting with: a) a single electrostatic wave
(SEW), b) beating electrostatic waves (BEW).

A. Overall implementation

1. We first choose a time step∆t smaller than the
ion-ion relaxation time calculated at the initial
temperature of the ions.

2. Using a4th order Runge-Kutta scheme we then
follow each particle in our simulation for∆t sec-
onds according to the equation of motion for a sin-
gle ion, Eq. (12).

3. Next we randomly choose a collision partner for
each ion.

4. Using Monte Carlo method we then determine the
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velocity increments for all colliding pairs as de-
scribed in section III B. The new velocities are
fed back into the Runge-Kutta solver.

5. After each collision, we store the value of the
scattering angleΘ for each particle. We assume
that whenever

∑
sin2 Θ ≥ 1 the particle has

undergone one ion-ion Coulomb collision. Here
the summation is over successive collisions for a
given particle.

B. Momentum exchange during a collision

We treat Coulomb collisions between ions as a small
angle binary elastic scattering events [17]. Such colli-
sions preserve energy and momentum.

The relative velocity vectoru(ux, uy, uz) for a collid-
ing pair is:

u = va − vb, (5)

whereva andvb are the velocities of two colliding ions.
The post-collision relative velocityuf is:

uf = ui + ∆u, (6)

whereui is the relative velocity right before the colli-
sion and∆u is the change in the relative velocity due
to the collision. The change in the relative velocity due
to a scattering event could be derived from conservation
principles [17],

∆ux = (ux/u⊥)uz sinΘ cos Φ− (uy/u⊥)u sin Θ sin Φ
− ux(1− cosΘ), (7a)

∆uy = (uy/u⊥)uz sinΘ cos Φ + (ux/u⊥)u sin Θ sin Φ
− uy(1− cosΘ), (7b)

∆uz = −u⊥ sinΘ cos Φ− ux(1− cosΘ), (7c)

whereu2
⊥ = u2

x + u2
y andu2 = u2

⊥ + u2
z. Here perpen-

dicular and parallel directions are defined relative to the
magnetic field (̂z-axis). Whenu⊥ = 0 we have,

∆ux = u sin Θ cos Φ, (8a)

∆uy = u sin Θ sin Φ, (8b)

∆uz = −u(1− cosΘ). (8c)

Angle Φ is chosen homogeneously randomly from 0 to
2π. AngleΘ is chosen according to:

sinΘ =
2δ

1 + δ2
, (9a)

1− cosΘ =
2δ2

1 + δ2
, (9b)

whereδ = tan(Θ/2) is a random number chosen with
the Gaussian distribution centered around zero and hav-
ing the following variance〈δ2〉:

〈δ2〉 = ∆t
q4nλ

πε20m
2‖u‖3

, (10)

whereq andm are the charge and the mass of the ion,
n is the particle number density,λ is the Coulomb log-
arithm, ε0 is the permittivity of free space,‖u‖ is rela-
tive speed of two colliding ions, and∆t is the time step
[17]. This small angle restriction allows us to interpret as
the ion-ion collision frequencyνii to the binary collision
frequencyνb and the formalism implicitly accounts for
electron shielding. We did not however track the electron
dynamics as electrons are not expected to be effected by
low frequency of the wave. We assume that the electron
temperature is not affected by the low frequency waves
of the problem,ω < ωce.

The post-collision velocity of each particle is found
simply from,

vf
a = vi

a + (m/2)∆u, (11a)

vf
b = vi

b + (m/2)∆u. (11b)

C. Moving the particles

Starting from the Lorentz force equation,

F = mẍ = q(E + v× B), (12)

we can derive equations of motion for a single particle in
three dimensions. In our analysis, the magnetic field is
constant ,B = Bẑ, and the electric field arises from the
propagating electrostatic waves, as shown in Fig. 1,

ẍ = ẏ + E
∑

i

sin(x− ωit), (13a)

ÿ = −ẋ, (13b)

z̈ = 0, (13c)
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FIG. 3: ε = 10, ν1 = 24.3, ν2 = 25.3. Collisionless case.
The ”hump” corresponds to the particles not accelerated by the
beating waves in accordance with Eq. (4).

so thatẍ, ÿ, andz̈ are the second derivatives with respect
to timet, and the other variables are the same as those ap-
pearing in equations (2) and (3). Equations (13) could be
solved numerically using 4th order Runge-Kutta method.

IV. SIMULATION

The above model is used to simulated the case of
BEW acceleration (ε = 10, ν1 = 24.3, ν2 = 25.3 κi =
1) and compared to those of SEW acceleration under
similar condition (ε = 10, ν = 24.3). To visualize the
numerical results we use Poincare cross-sections (ρ vs. θ
phase diagrams) [15]. We will also investigate how colli-
sions influence the energy evolution of the entire system.

A. Phase diagrams

Figure 3 follows collisionless evolution of 1000 parti-
cles in the plotρ vs. θ. Initially we distribute all particles
homogeneously over region of the phase spaceρ . 20.
The stochastic heating is observed whenever ions reach
thestochasticzone (ρ > 20), Fig2b. Particles with initial
conditions lying outside prohibited zone are accelerated
as could be seen from that figure. The points correspond-
ing to unaccelerated particles define a mount-like struc-
ture, seen in the last two panels of Fig. 3, which corre-
sponds to prohibited zone shown in figure 2b. Figure 4
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FIG. 4: ε = 10, ν1 = 24.3, ν2 = 25.3. Particles are al-
lowed to collide with each other. We take the initial collision
frequency required for step 1 of our algorithm to be∼ 106,
which corresponds tone ∼ 1012 cm−3 and Te = 300 K. Un-
like Fig. 3, beating electrostatic waves accelerate all ions.

shows the BEW ion acceleration case where the evolu-
tion of phase space points is qualitatively different then
the collisionless case illustrated in 3. Even ions originally
in the forbidden acceleration zone are accelerated.

B. Energy Evolution

Now that we showed that collisions enhance ion heat-
ing, we will analyze the energy evolution of the entire
system. In this section we compare the cases of BEW
and SEW ion acceleration by beating electrostatic waves
and a single electrostatic wave.

Figure 5 shows perpendicular component of the en-
ergy for BEW as well as SEW cases. Initially the energy
increases exponentially. This corresponds to ions fun-
nelling to the stochastic region. The process is analogous
to phase space diffusion - thus its exponential nature. As
more particles find their way into the stochastic region,
the exponential increase is followed by the equilibration
of the energy (by stochastic motion and collisions). Be-
cause particles fill up the stochastic region randomly, the
statistical average of the energy stays constant.

Figure 5 demonstrates that collisions significantly in-
crease both the ion heating rate and the final average en-
ergy.

In order to help us further illustrate these effects better
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FIG. 5: Perpendicular energy evolution for 1000 particles in-
teracting with beating waves.ε = 10, ν1 = 24.3, ν2 =
25.3.For comparison we also show the energy evolution for
the single wave-ion interaction.ε = 10, ν = 24.3.

80

60

40

20

0

A
ve

ra
ge

 E
ne

rg
y

14x10
3
 1086420

Time (seconds*ωc)

νb=0

νb=4.15*10
-4ωc

νb=4.15ωc

νb=0.04ωc

FIG. 6: Perpendicular energy evolution for 1000 particles in-
teracting with beating waves. Dashed lines correspond to the
clamped values of collision frequency and solid curve rep-
resents the self-consistent simulation.ε = 10, ν1 = 24.3,
ν2 = 25.3.

we have ran the simulation with the collision frequency
restrained to a constant value irrespective of the temper-
ature. Figure 6 shows the results for four such cases and
a simulation with self-consistent collision frequency cal-
culation, for comparison. The figure indicates that there
is an optimum collision frequency at which the heating
rate and efficiency are at the maximum. When the colli-
sion frequency is increased from 0 toνb = 0.04ωc, the

ions diffuse faster into the stochastic region and the heat-
ing efficiency improves. However, as the collision fre-
quency is further increased (νb = 4.14ωc), the heating
rate as well as the efficiency start dropping because colli-
sions increasingly disturb ion motion too much. In a real
plasma the ion collision frequency scales as∼ T

−3/2
ion (for

Ti . Te). As the electrostatic waves deposit their energy
into the plasma, the ions collide less often and the colli-
sion frequency drops to its optimum value. However, if
the collision frequency decreases even further, the heat-
ing efficiency drops, driving down the temperature and
stabilizing the collision frequency back to its optimum
value. Therefore, we can conclude that the collision fre-
quency always changes to accommodate the maximum
possible heating rate. This becomes more evident by
comparing the clamped value ofνb simulations (dashed
lines) to the solid line which was obtained by running
the simulation and allowing the collision frequency to
change self-consistently with the ion temperature evolu-
tion.

V. CONCLUSIONS

Numerical simulations of the nonlinear interaction of
magnetized ions with beating electrostatic waves (BEW)
were carried out. The resulting particle heating was com-
pared to that obtained from simulations with interaction
with SEW under the same conditions. The higher heat-
ing rate and temperature attained in BEW acceleration
can be explained through the following fundamental de-
scription. In the SEW interaction thermalizing collisions
are the only means for particles below a certain thresh-
old of energy, associated with the resonant condition,
to reach the region of phase space were stochastic and
vigorous heating takes place. The non-resonant charac-
ter of BEW acceleration allows a significant fraction of
the ion distribution function to be accelerated and reach
the stochastic region. This acceleration is augmented by
collisions. In addition to the thermalizing role of colli-
sions, this simulation-supported phenomenological pic-
ture points to the promise of using BEW as a new and ef-
ficient method for accelerating magnetized ions in a real
plasma.

—————————————————————
-
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